Skip to main content
Log in

Structural evolution in mechanically alloyed Al-Fe powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The structural evolution in mechanically alloyed binary aluminum-iron powder mixtures containing 1, 4, 7.3, 10.7, and 25 at. pct Fe was investigated using X-ray diffraction (XRD) and electron microscopic techniques. The constitution (number and identity of phases present), microstructure (crystal size, particle size), and transformation behavior of the powders on annealing were studied. The solid solubility of Fe in Al has been extended up to at least 4.5 at. pct, which is close to that observed using rapid solidification (RS) (4.4 at. pct), compared with the equilibrium value of 0.025 at. pct Fe at room temperature. Nanometer-sized grains were observed in as-milled crystalline powders in all compositions. Increasing the ball-to-powder weight ratio (BPR) resulted in a faster rate of decrease of crystal size. A fully amorphous phase was obtained in the Al-25 at. pct Fe composition, and a mixed amorphous phase plus solid solution of Fe in Al was developed in the Al-10.7 at. pct Fe alloy, agreeing well with the predictions made using the semiempirical Miedema model. Heat treatment of the mechanically alloyed powders containing the supersaturated solid solution or the amorphous phase resulted in the formation of the Al3Fe intermetallic in all but the Al-25 at. pct Fe powders. In the Al-25 at. pct Fe powder, formation of nanocrystalline Al5Fe2 was observed directly by milling. Electron microscope studies of the shock-consolidated mechanically alloyed Al-10.7 and 25 at. pct Fe powders indicated that nanometer-sized grains were retained after compaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.H. Shingu: inFirst Int. Conf. on Processing Materials for Properties, H. Henein and T. Oki, eds. TMS, Warrendale, PA, 1993, pp. 1275–80.

    Google Scholar 

  2. F.H. Froes, C. Suryanarayana, K. Russell, and C.G. Li:Int. J. Mechanochem. Mech. Alloying, 1994, vol. 1, pp. 112–24.

    CAS  Google Scholar 

  3. J.S. Benjamin:Metall. Trans., 1970, vol. 1, pp. 2943–51.

    CAS  Google Scholar 

  4. C.C. Koch: inProcessing of Metals and Alloys, R.W. Cahn, ed., VCH Verlagsgesellschaft, Weinheim, F.R. Germany, 1991, Materials Science and Engineering—A Comprehensive Treatment, pp. 193–245.

  5. D. Maurice and T.H. Courtney:Metall. Trans. A., 1990, vol. 21A, pp. 289–303.

    CAS  Google Scholar 

  6. C. Suryanarayana and F.H. Froes:Mater. Sci. Forum, 1992, vol. 88–90, pp. 445–52.

    Article  Google Scholar 

  7. C. Suryanarayana and F.H. Froes:Metall. Trans. A., 1992, vol. 23A, pp. 1071–81.

    CAS  Google Scholar 

  8. C.C. Koch:Nanostructured Mater., 1993, vol. 2, pp. 109–29.

    Article  CAS  Google Scholar 

  9. Dispersion Strengthened Aluminum Alloys, Y.W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988.

    Google Scholar 

  10. Mechanical Alloying for Structural Applications, J.J. deBarbadillo, F.H. Froes, and R. Schwarz, eds., ASM INTERNATIONAL, Materials Park, OH, 1993.

    Google Scholar 

  11. T.B. Massalski:Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986, vol. 1, pp. 147–49.

    Google Scholar 

  12. C. Suryanarayana:Bull. Mater. Sci., 1994, vol. 17, pp. 307–46.

    CAS  Google Scholar 

  13. C. Suryanarayana, F.H. Froes, D.K. Mukhopadhyay, G. Cizmich, G.H. Chen, Z. Peng, and J. Mishurda: inProcessing and Fabrication of Advanced Materials III, V.A. Ravi, T.S. Srivatsan, and J.J. Moore, eds., TMS, Warrendale, PA, 1994, pp. 567–84.

    Google Scholar 

  14. M.A. Morris and D.G. Morris:Mater. Sci. Eng. A, 1991, vol. 136, pp. 59–70.

    Article  Google Scholar 

  15. D.K. Mukhopadhyay, C. Suryanarayana, and F.H. Froes:Scripta Metall. Mater., 1994, vol. 31, pp. 333–38.

    Article  CAS  Google Scholar 

  16. Metallic Glasses, T.R. Anantharaman, ed., Trans Tech Pub., Aedermannsdorf, Switzerland, 1984.

    Google Scholar 

  17. C. Suryanarayana and F.H. Froes:Nanostructured Mater., 1993, vol. 3, pp. 147–53.

    Article  CAS  Google Scholar 

  18. B. Huang: Ph.D. Thesis, Kyoto University, Japan, 1990.

    Google Scholar 

  19. B. Huang, N. Tokijane, K.N. Ishihara, P.H. Shingu, and S. Nasu:J. Non-Cryst. Solids, 1990, vol. 117/118, pp. 688–91.

    Article  Google Scholar 

  20. I.S. Polkin, E.J. Kaputkin, and A.B. Borzov: inStructural Applications of Mechanical Alloying, F.H. Froes and J.J. deBarbadillo, eds., ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 251–56.

    Google Scholar 

  21. Y. Dong, W.H. Wang, L. Lin, K.Q. Xiao, S.H. Tong, and Y.Z. He:Mater Sci. Eng. A, 1991, vol. 134, pp. 867–71.

    Article  Google Scholar 

  22. G. Wang, D. Zhang, H. Chen, B. Lin, W. Wang, and Y. Dong:Phys. Lett. A, 1991, vol. 155, pp. 57–61.

    Article  CAS  Google Scholar 

  23. G. Korth: inAdvanced Synthesis of Engineered Structural Materials, J.J. Moore, E.J. Lavernia, and F.H. Froes, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 81–86.

    Google Scholar 

  24. B.D. Cullity:Elements of X-Ray Diffraction, Addison-Wesley Pub. Co., Reading, MA, 1976.

    Google Scholar 

  25. S.K. Pradhan, T. Chakraborty, S.P. Sengupta, C. Suryanarayana, A. Frefer, and F.H. Froes:Nanostructured Mater., 1995, vol. 5, pp. 53–61.

    Article  CAS  Google Scholar 

  26. G. Falkenhagen and W. Hofmann:Z. Metallkd., 1952, vol. 43, p. 69.

    CAS  Google Scholar 

  27. A. Fontaine and A. Guinier:Phil. Mag., 1971, vol. 31, p. 70.

    Google Scholar 

  28. M. De Sanctis, A.P. Woodfield, and M.H. Loretto:Int. J. Rapid Solidification, 1988, vol. 4, pp. 53–74.

    Google Scholar 

  29. A. Kamio, H. Tezuka, T. Sato, T.T. Long, and T. Takahashi:J. Jpn. Inst. Light Met., 1986, vol. 36, pp. 72–80.

    CAS  Google Scholar 

  30. P. Furrer and H. Warlimont:Z. Metallkd., 1973, vol. 64, pp. 236–48.

    CAS  Google Scholar 

  31. A. Tonejc and A. Bonefacic:J. Appl. Phys., 1968, vol. 40, pp. 419–20.

    Article  Google Scholar 

  32. K.F. Kobayashi, N. Tachibana, and P.H. Shingu:J. Mater. Sci., 1990, vol. 25, pp. 801–04.

    CAS  Google Scholar 

  33. K.F. Kobayashi, N. Tachibana, and P.H. Shingu:J. Mater. Sci., 1990, vol. 25, pp. 3149–54.

    Article  CAS  Google Scholar 

  34. M.D. Zdujic, K.F. Kobayashi, and P.H. Shingu:J. Mater. Sci., 1991, vol. 26, pp. 5502–08.

    Article  CAS  Google Scholar 

  35. M.D. Zdujic, K.F. Kobayashi, and P.H. Shingu:Z. Metallkd., 1990, vol. 81, pp. 380–85.

    CAS  Google Scholar 

  36. H. Jones:Rapid Solidification of Metals and Alloys, Institution of Metallurgists, London, 1982.

    Google Scholar 

  37. R.B. Schwarz, R.R. Petrich, and C.K. Saw:J. Non-Cryst. Solids, 1985, vol. 76, pp. 281–302.

    Article  CAS  Google Scholar 

  38. A.K. Messen, F.R. de Boer, R. Boom, P.F. de Chatel, W.C.M. Martens, and A.R. Miedema:CALPHAD, 1983, vol. 7, pp. 51–70.

    Article  Google Scholar 

  39. T. Koyano, T. Takizawa, T. Fukunaga, U. Mizutani, S. Kamizuru, E. Kita, and A. Tasaki:J. Appl. Phys., 1993, vol. 73, pp. 429–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, D.K., Suryanarayana, C. & FROES, F.H.(. Structural evolution in mechanically alloyed Al-Fe powders. Metall Mater Trans A 26, 1939–1946 (1995). https://doi.org/10.1007/BF02670665

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670665

Keywords

Navigation