Skip to main content
Log in

Modeling of inverse segregation and porosity formation in directionally solidified aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model has been developed which simulates inverse segregation and microporosity formation in directionally solidified alloys. Based upon a finite difference scheme, the model takes into account volume changes associated with density variations during solidification. The continuity equations for the mass, the solute, and the energy together with the Darcy equation describing the flow in the mushy zone are solved in a mixed Lagrangian-Eulerian representation. All nodal points within the liquid phase move with the fluid velocity, whereas nodes are fixed in space as soon as they are reached by dendrite tips. When the dendrite tips arrive at the end of the ingot, the remaining interdendritic liquid partially compensates for the solidification shrinkage occurring deeper within the volume. Since the size of the ingot remains fixed from that point on (absence of a purely liquid region), air (macroporosity) is introduced at the mesh points to satisfy the mass balance, starting from the top of the mushy zone. The formation of microporosity is also accounted for in the model through a calculation of local hydrogen segregation. Using this model, it is shown that inverse segregation decreases with increasing hydrogen content (or volume fraction of microporosity). The results of the simulation are compared with experimental results obtained on an Al-Cu alloy solidified under well-controlled directional conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  2. G. Lesoult and S. Sella: inNon-Linear Phenomena in Materials Science, G. Martin and L.P. Kubin, eds., Trans Tech Publications Ltd., Aedermansdorf, Switzerland, 1988, p. 167.

    Google Scholar 

  3. T.P. Battle:Int. Mater. Rev., 1992, vol. 37, pp. 249–70.

    CAS  Google Scholar 

  4. C. Beckermann and R. Viskanta:Physicochem. Hydrodyn., 1988, vol. 10, pp. 195–213.

    CAS  Google Scholar 

  5. W.D. Bennon and F.P. Incropera:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161-70 and 2171–87.

    Article  CAS  Google Scholar 

  6. S. Ganesan and D.R. Poirier:Metall. Trans. B, 1990, vol. 21B, pp. 173–81.

    CAS  Google Scholar 

  7. J. Ni and C. Beckermann:Metall. Trans. B, 1991, vol. 22B, pp. 349- 61.

    Google Scholar 

  8. V.R. Voller, A.D. Brent, and C. Prakkash:Int. J. Heat Mass Transfer, 1989, vol. 32, pp. 1719–31;Appl. Math. Modelling, 1990, vol. 14, 320-26.

    Article  CAS  Google Scholar 

  9. P.J. Prescott, F.P. Incropera, and W.D. Bennon:Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 2351–59.

    Article  CAS  Google Scholar 

  10. J.S. Kirkaldy and W.V. Youdelis:Trans. TMS-AIME, 1958, vol. 212, 833–40.

    CAS  Google Scholar 

  11. M.C. Flemings and G.E. Nereo:Trans. TMS-AIME, 1967, vol. 239, pp. 1449–61.

    CAS  Google Scholar 

  12. S. Minakawa, I.V. Samarasekera, and F. Weinberg:Metall. Trans. B, 1985, vol. 16B, pp. 595–604.

    CAS  Google Scholar 

  13. K. Kubo and R.D. Pehlke:Metall. Trans. B, 1985, vol. 16B, pp. 359–66.

    CAS  Google Scholar 

  14. D.R. Poirier, K. Yeum, and A.L. Maples:Metall. Trans. A, 1987, vol. 18A, 1979–87.

    CAS  Google Scholar 

  15. J. Ampuero, A. Hoadley, and M. Rappaz: inModeling of Casting, Welding and Advanced Solidification Processes V, M. Rappaz, M. Ozgu, and K. Mahin, eds., TMS, Warrendale, PA, 1991, pp. 449–54.

    Google Scholar 

  16. P.N. Anyalebechi:Cast Met., 1991, vol. 3, pp. 182–201.

    Google Scholar 

  17. K. Kubota, K. Murakami, and T. Okamoito:Mater. Sci. Eng., 1986, vol. 79, pp. 67–77.

    Article  CAS  Google Scholar 

  18. D. Lynch:J. Comput. Phys., 1982, vol. 47, pp. 387–411.

    Article  Google Scholar 

  19. D.R. Poirier:Metall. Trans., 1987, vol. 18B, pp. 245–56.

    CAS  Google Scholar 

  20. D.H. Kirkwood:Mater. Sci. Eng., 1985, vol. 29, p. L1.

    Google Scholar 

  21. J.R. Cahoon and W.V. Youdelis:Trans. TMS-AIME, 1968, vol. 242, pp. 757–59.

    CAS  Google Scholar 

  22. E. Niyama, T. Ushida, M. Morikawa, and S. Saito:AFS Int. Cast Met. J., 1982, Sept., pp. 52–63.

    Google Scholar 

  23. R.D. Pelke, A. Jeyarajan, and H. Wada:Summary of Thermal Properties for Casting Alloys and Mold Materials, University of Michigan, Ann Arbor, MI, 1982.

    Google Scholar 

  24. S. Ganesan and D.R. Poirier:Metall. Trans. A, 1987, vol. 18A, 721- 23.

    Google Scholar 

  25. W. Kurz and D.J. Fisher:Fundamentals of Solidification, 3rd ed., Trans Tech Publications Ltd., Aedermansdorf, Switzerland, 1989.

    Google Scholar 

  26. J.L. Murray:Int. Met. Rev., 1985, vol. 30 (5), pp. 211–33.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousset, P., Rappaz, M. & Hannart, B. Modeling of inverse segregation and porosity formation in directionally solidified aluminum alloys. Metall Mater Trans A 26, 2349–2358 (1995). https://doi.org/10.1007/BF02671249

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671249

Keywords

Navigation