Skip to main content
Log in

Stress corrosion cracking of aluminum alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Stress corrosion cracking of aluminum alloys is reviewed. An extensive failure analysis shows how many service failures occurred in the aerospace industry over a ten year period and what kind of alloys and stresses led to initiation and propagation of stress corrosion cracks which caused these service failures. The paper contains most of the results of stress corrosion tests with aluminum alloys that have been obtained to date with fracture mechanics techniques. Stress corrosion crack growth rate measurements are compared with the results from smooth specimen testing and it is shown that the correlation between the different test results is very satisfactory. The present and limited status of theoretical understanding of stress corrosion cracking is outlined.

A major part of the paper is devoted to the results of the latest alloy development. High strength aluminum alloys of dramatically increased stress corrosion resistance are available now. In the near future, stress corrosion resistant alloys of even higher strength might become available. What is still lacking is a detailed understanding of the mechanisms by which stress corrosion cracks initiate and propagate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  1. M. O. Speidel:The Theory of Stress Corrosion Cracking in Alloys, pp. 289–354, NATO Scientific Affairs Division Brussels 1971.

    Google Scholar 

  2. M. O. Speidel and M. V. Hyatt:Advances in Corrosion Science and Technology, vol. 2, pp. 115–335, Plenum Press, New York, 1972.

    Google Scholar 

  3. W. Rosenhain and S. L. Archbutt:Proc. Roy. Soc, 1919, vol. A 96, p. 55.

    ADS  Google Scholar 

  4. M. V. Hyatt and M. O. Speidel:Stress Corrosion Cracking in High-Strength Steels and in Titanium and Aluminum Alloys, pp. 147–244, Naval Research Laboratory, Washington, D.C., 1972.

    Google Scholar 

  5. R. H. Brown, D. O. Sprowls. and M. B. Shumaker:Stress Corrosion Cracking of Metals-A State of the Art, ASTM STP 518, pp. 87–118, ASTM, Philadelphia, 1972.

    Book  Google Scholar 

  6. Aluminum Standards and Data, 3rd ed., The Aluminum Association, New York, 1973.

  7. 7049-T73, Kaiser Aluminum Company, Oakland, 1970.

  8. Aerospace Review, Reynolds Metals Company, Richmond, 1972.

  9. A. R. G. Brown and J. A. Gray:Tech. Mem. Mat. 139, Royal Aircraft Establishment, Farnborough, England, 1972.

    Google Scholar 

  10. J. T. Staley, H. Y. Hunsicker, and R. Schmidt:New Aluminum Alloy X 7050, ALCOA, Pittsburgh, October 1971.

  11. J. T. Staley: Report No. N00019-71-C-0131, ALCOA, Pittsburgh, May 1972.

  12. J. T. Staley: Report No. F33615-69-C-1644, ALCOA, Pittsburgh, February 1973.

  13. ALCOA-Aluminum Alloy X 7050, ALCOA, Pittsburgh, March 1971.

  14. H. A. Holl, M. A. Reynolds, and J. G. Harris: Report No. S3JCLH, ALCAN, England, November 1972.

  15. E. Di Russo and G. Bollani: Report No. 15, Istituto Sperimentale Dei Metalli Leggeri, Novara, Italy, April 1972.

  16. G. Fischer, F. W. Lynker, and M. Markworth:Aluminum, 1972, vol. 48, p. 413.

    CAS  Google Scholar 

  17. J. P. Lyle and W. S. Cebulak:Report Properties of High-Strength Aluminum PJM Products, ALCOA, Pittsburgh, March 1972.

    Google Scholar 

  18. M. O. Speidelet al. : Corrosion Fatigue, NACE-2, p. 324, NACE, Houston, 1972.

  19. M. J. Blackburn and M. O. Speidel:Electron Microscopy and Structure of Materials, p. 905, University of California Press, Berkeley, 1971.

    Google Scholar 

  20. M. O. Speidel:L’Hydrogène dans les Métaux, Editions Science et Industrie, vol. 2, p. 290 and p. 358, Paris, 1972.

    Google Scholar 

  21. S. M. Wiederhorn and L. H. Bolz:J. Amer. Ceram. Soc, 1970, vol. 53, p. 543.

    Article  CAS  Google Scholar 

  22. J. A. Feeney and M. J. Blackburn:The Theory of Stress Corrosion Cracking in Alloys, p. 355, NATO, Brussels, 1971.

  23. The Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed., NATO Scientific Affairs Division, Brussels, 1971.

  24. Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys,Proceedings of Conference at Unieux-Firminy, France, June 1973. To be published by NACE, Houston, 1975.

  25. M. O. Speidel:Proceedings of Conference, “Hydrogen in Metals,” p. 249, ASM, 1974.

  26. W. Vedder and D. A. Vermilyea:Trans. Faraday Soc, 1969, vol. 65, p. 561.

    Article  CAS  Google Scholar 

  27. I. L. Rosenfeld and I. K. Marshakov:Zh. Fiz. Khim., 1957, vol. 31, p. 2328.

    Google Scholar 

  28. B. F. Brown, C. T. Fujii, and E. P. Dahlberg:J Electrochem. Soc, 1969, vol. 116, p. 218.

    Article  CAS  Google Scholar 

  29. T. R. Beck:Corrosion, 1974, vol. 30, p. 408.

    CAS  Google Scholar 

  30. D. A. Vermilyea:J. Electrochem. Soc, 1972, vol. 119, p. 405. Also, “A Film Rupture Model for Stress Corrosion Crack Propagation.” To be published in Ref. 24, 1975.

    Article  CAS  Google Scholar 

  31. R. Gest and A. R. Troiano: Ph.D. Thesis of R. Gest, 1972, Case Western Reserve University.

  32. J. Berggreen and H. Kaesche: Ph.D. Thesis of J. Berggreen, 1973, University Erlangen-Nürnberg, Germany.

    Google Scholar 

  33. D. O. Sprowls and R. H. Brown:Fundamental Aspects of Stress Corrosion Cracking, p. 466, NACE, Houston, 1969.

  34. ALCOA Green Letter “Aluminum Alloy 2124,” 1970.

  35. “Toughness Criteria Met by New Alloy,”Iron Age, May 24, 1973.

  36. S. A. Levy, R. E. Zinkham, and G. E. Spangler:X2048, A High Strength, High Toughness Alloy for Aircraft Applications, AIAA paper 73-385, 1973.

  37. S. A. Levy: private communication, 1973, Reynolds Metals Co., Richmond.

  38. D. O. Sprowls, M. B. Shumaker, J. D. Walsh, and J. W. Coursen: “Evaluation of Stress-Corrosion Cracking Susceptibility Using Fracture Mechanics Tech- niques,” Contract NAS 8-21487, Final Report, May 31, 1973.

  39. J. V. Luhan and T. L. Summerson:Metals Eng. Quart., 1970, p. 35.

  40. 7049-T73 Kaiser Aluminum’s New Aluminum Alloy for Forgings, Kaiser Aluminum, Jan. 1970.

  41. L. W. Mayer: “ALCOA Alloy 7050,” ALCOA Green Letter, 1973.

  42. J. T. Staley:Metals Eng. Quart., 19 73, p. 52.

  43. H. Y. Hunsicker, J. T. Staley, and R. H. Brown:Met. Trans., 1972, vol. 3, p. 201.

    Article  CAS  Google Scholar 

  44. A. W. Sommer, N. E. Paton, and D. G. Folgner: “Effects of Thermomechanical Treatments on Al-Alloys,” unpublished NAR data, 1972.

  45. M. Conserva, M. Buratti, E. Di Russo, and F. Gatto:Mater. Sci. Eng., 1973, vol. 11, pp. 103–12.

    Article  CAS  Google Scholar 

  46. E. Di Russo, M. Conserva, F. Gatto, and H. Markus:Met. Trans., 1973, vol. 4, p. 1133.

    Article  Google Scholar 

  47. J. P. Lyle, W. S. Cebulak, and K. E.Buchovecky: “Properties of High Density Aluminum PJM Products,” ALCOA-Report, April 1972.

  48. J. P. Lyle and W. S. Cebulak:Metals Eng. Quart., 1974, vol. 14, p. 52.

    CAS  Google Scholar 

  49. A. P. Haarr: “Development of ALuminum Base Alloys-Section III Contract No. DA-36-034-ORD-3559RD (Frankford Arsenal), May 31, 1966.

  50. M. O. Speidel:Fundamental Aspects of Stress Corrosion Cracking, p. 561, NACE, Houston, 1969.

  51. M. J. Bomford and J. S. Benjamin: German Patent 2,232,884, July 6, 1971.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Brown Boveri Research Center, Baden, Switzerland

This paper is based on an invited presentation made at a symposium on “Advances in the Physical Metallurgy of Aluminum Alloys” held at the Spring Meeting of TMS-IMD in Philadelphia, Pennsylvania, on May 29 to June 1, 1973. The symposium was co-sponsored by the Physical Metallurgy Committee and the Non-Ferrous Metals Committee of TMS-IMD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speidel, M.O. Stress corrosion cracking of aluminum alloys. Metall Trans A 6, 631–651 (1975). https://doi.org/10.1007/BF02672284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02672284

Keywords

Navigation