Skip to main content
Log in

Mathematical simulation of direct reduction

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A finite element analysis is developed for nontopochemical reduction of a porous iron oxide pellet. The reduction kinetics are essentially the same as those used by Trushenski, Li and Philbrook. However, several novel features arise in the present analysis. The computational technique used in this analysis provides an explicit way of calculating gas profiles for each step of the computations. To a limited extent multicomponent gas mixtures (either carbon monoxide, carbon dioxide and inert gases; or hydrogen, steam and inert gases) can be accomodated as the reducing agent. A corresponding analysis for direct reduction of iron oxide in a countercurrent shaft furnace assumes adiabatic conditions to prevail in the furnace as opposed to the usual isothermal assumption. The analysis assumes steady-state operation of the furnace, and plug flow of gas and solid. Profiles of gas and solid temperatures, degree of reduction of iron oxide pellets, bulk gas and solid compositions are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. T. E. Dancy:Met. Trans. B, 1977, vol. 8B, p. 201.

    Article  CAS  Google Scholar 

  2. G. G. Carinci and D. C. Meissner:E/MJ Operating Handbook of Mineral Processing, 1976, p. 292.

  3. K. Li:Blast Furnace, vol. 19, p. 153, Coke Oven and Raw Materials Committee, TMS-AIME, 1960.

  4. S. P. Trushenski, K. Li and W. O. Philbrook:Met. Trans., 1974, vol 5, p. 1149.

    Article  CAS  Google Scholar 

  5. S. P. Trushenski: Ph.D. Thesis, Carnegie-Mellon University., Pittsburgh, PA, 1971.

    Google Scholar 

  6. R. L. Miller: M.S. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1968.

    Google Scholar 

  7. N. A. Warner:Trans. TMS-AIME. 1964, vol. 230, p. 163.

    CAS  Google Scholar 

  8. G. Nabi and W. K. Lu:Trans. TMS-AIME, 1968, vol. 242, p. 2471.

    CAS  Google Scholar 

  9. A. M. Cance:Trans. Faraday Soc., 1925, vol. 21, p. 176.

    Article  Google Scholar 

  10. K. O. Yu: Ph.D. Dissertation, University of Kentucky, Lexington, KY, 1978.

    Google Scholar 

  11. H. L. Toor and H. S. Chiang:J. AICHE, 1959, vol. 5, p. 339.

    Article  CAS  Google Scholar 

  12. H. L. Toor:J. AICHE, 1962, vol. 8, p. 70.

    Article  CAS  Google Scholar 

  13. L. K. Peters and L. W. Richards:Atmos. Environ., 1977, vol. 11, p. 101.

    Article  CAS  Google Scholar 

  14. Q. T. Tsay, W. H. Ray, and J. Szekely:J. AICHE, 1976, vol. 22, p. 1064.

    Article  CAS  Google Scholar 

  15. F. J. Harvey and J. W. Clark: private communication, Westinghouse Research Laboratories, Pittsburgh, PA.

  16. R. H. Spitzer, F. S. Manning, and W. O. Philbrook:Trans. TMS-AIME, 1968, vol. 242, p. 618.

    CAS  Google Scholar 

  17. H. B. Keller:Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell Publishing Company, MA, 1968.

    Google Scholar 

  18. J. D. Lambert:Computational Methods in Ordinary Differential Equations, John Wiley & Sons, New York, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

K. O. YU, formerly Research Associate with the Department of Metallurgical Engineering and Materials Science, University of Kentucky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K.O., Gillis, P.P. Mathematical simulation of direct reduction. Metall Trans B 12, 111–120 (1981). https://doi.org/10.1007/BF02674764

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674764

Keywords

Navigation