Skip to main content
Log in

The Effect of ceramic reinforcements during spray atomization and codeposition of metal matrix composites: part i. heat transfer

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effects of ceramic participates on microstructure during spray atomization and codeposition of metal matrix composites (MMCs) were investigated, with particular emphasis on the transfer of thermal energy from the atomized matrix to the ceramic particulates. A thermal energy model, based on fundamental heat-transfer considerations, was formulated, and the numerical results were compared to the microstructural findings. In this model, the transfer of thermal energy from the atomized metal to the ceramic phase was computed for two separate stages: (a) atomization and (b) deposition. The numerical results obtained using SiC particulates in an aluminum matrix show that 10 pct of the enthalpy of the atomized spray is transferred to the ceramic particulates during atomization, whereas 10 pct of the thermal energy available after deposition will be consumed in the process of equilibrating the temperature of the particulates to that of the matrix. The enhanced heat transfer achieved as a result of the presence of ceramic reinforcement was correlated with the grain sizes of various unreinforced and reinforced spraydeposited MMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Fishman:J. Met., 1986, vol. 38, p. 26.

    Google Scholar 

  2. Y. Flom and R.J. Arsenault:J. Met., 1986, vol. 38, p. 31.

    CAS  Google Scholar 

  3. Y. Flom and R.J. Arsenault:Mater. Sci. Eng., 1986, vol. 77, p. 191.

    Article  CAS  Google Scholar 

  4. A. Mortensen, M.N. Gungor, J.A. Cornie, and M.C. Flemings:J. Met., 1986, vol. 38, p. 30.

    CAS  Google Scholar 

  5. A. Mortensen, J.A. Cornie, and M.C. Flemings:J. Met., 1988, vol. 40, p. 12.

    CAS  Google Scholar 

  6. V.C. Nardone and K.W. Prewo:Scripta Metall., 1986, vol. 20, p. 43.

    Article  CAS  Google Scholar 

  7. T.G. Nieh:Metall. Trans. A, 1984, vol. 15A, p. 139.

    CAS  Google Scholar 

  8. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia:J. Mater. Sci., 1991, vol. 26, p. 1137.

    Article  CAS  Google Scholar 

  9. Duralcan Metal Matrix Composites May—June, 1989 Data Report Package, Durai Aluminum Composites Corporation, San Diego, CA 92121.

  10. T.W. Clyne, M.G. Bader, G.R. Cappleman, and P.A. Hubert:J. Mater. Sci., 1985, vol. 20, p. 85.

    Article  CAS  Google Scholar 

  11. T.W. Clyne and J.F. Mason:Metall. Trans. A, 1987, vol. 18A, pp. 1519–30.

    CAS  Google Scholar 

  12. R. Mehrabian:MRS Symp., 1988, vol. 120, p. 3.

    CAS  Google Scholar 

  13. E.F. Fascetta, R.G. Riek, R. Mehrabian, and M.C. Flemings:Trans. Am. Foundrymen’s Soc., 1973, vol. 81, p. 81.

    Google Scholar 

  14. R. Mehrabian and M.C. Flemings:Trans. Am. Foundrymen’s Soc., 1972, vol. 80, p. 173.

    CAS  Google Scholar 

  15. H.L. Marcus, D.L. Bourell, Z. Eliezer, C. Persad, and W.F. Weldon:J. Met., 1987, vol. 39, p. 6.

    CAS  Google Scholar 

  16. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Mater. Manufacturing Processes, 1990, vol. 5, p. 165.

    Article  CAS  Google Scholar 

  17. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Int. J. Rapid Solidification, 1992, in press.

  18. T.C. Willis:Met. Mater., 1988, vol. 4, p. 485.

    CAS  Google Scholar 

  19. C.L. Buhrmaster, D.E. Clark, and H.O. Smart:J. Met., 1988, vol. 40, p. 44.

    CAS  Google Scholar 

  20. A.R.E. Singer:Annals of the CIRP, 1983, vol. 32, p. 145.

    Article  Google Scholar 

  21. M. Gupta, F.A. Mohamed, and E.J. Lavernia:J. Mater. Sci., 1992, in press.

  22. J. White, I.G. Palmer, I.R. Hughes, and S.A. Court: inAluminum-Lithium Alloys V, March 27–31, 1989, Williamsburg, VA, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Materials and Component Engineering Publications Ltd., Birmingham, United Kingdom, vol. 3, p. 1635.

    Google Scholar 

  23. T. Chanda, W.E. Frazier, F.A. Mohamed, and E.J. Lavernia:Proc. Symp. on Metal and Ceramic Matrix Composites: Processing, Modelling & Mechanical Behavior, R.B. Bhagat, A.H. Clauer, P. Kumar, and A.M. Ritter, eds., TMS Annual Meeting, Anaheim, CA, Feb. 19–22, 1990, p. 47.

    Google Scholar 

  24. K.A. Kojima, R.E. Lewis, and M.J. Kaufman: inAluminum-Lithium Alloys V, March 27–31, 1989, Williamsburg, VA, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Materials and Component Engineering Publications Ltd., Birmingham, United Kingdom, vol. 1, p. 85.

    Google Scholar 

  25. A.P. Divecha, S.G. Fishman, and S.D. Kumar:J. Met., 1981, vol. 3, p. 12.

    Google Scholar 

  26. S. Ochiai and K. Osamura:Metall. Trans. A, 1987, vol. 18A, pp. 673–79.

    CAS  Google Scholar 

  27. D.L. Erich:Int. J. Powder Metallurgy, 1987, vol. 23, p. 45.

    CAS  Google Scholar 

  28. J. Papazian:Metall. Trans. A, 1988, vol. 19A, pp. 2945–53.

    CAS  Google Scholar 

  29. R.H. Bricknell:Metall. Trans. A, 1986, vol. 17A, pp. 583–91.

    CAS  Google Scholar 

  30. H.C. Fiedler, T.F. Sawyer, R.W. Koop, and A.G. Leatham:J. Met., 1987, vol. 39, p. 28.

    CAS  Google Scholar 

  31. E.J. Lavernia and N.J. Grant:Mater. Sci. Eng., 1988, vol. 98, p. 381.

    Article  CAS  Google Scholar 

  32. E.J. Lavernia and N.J. Grant:Int. J. Rapid Solidification, 1986, vol. 2, p. 93.

    CAS  Google Scholar 

  33. M. Ruhr, E.J. Lavernia, and J.C. Baram:Metall. Trans. A, 1990, vol. 21A, pp. 1785–89.

    CAS  Google Scholar 

  34. S.D. Annavarapu, D. Apelian, and A. Lawley:Metall. Trans. A, 1988, vol. 19A, pp. 3077–86.

    CAS  Google Scholar 

  35. P. Mathur, D. Apelian, and A. Lawley:Acta Metall., 1989, vol. 37, p. 429.

    Article  CAS  Google Scholar 

  36. E.J. Lavernia:Int. J. Rapid Solidification, 1989, vol. 5, p. 47.

    CAS  Google Scholar 

  37. E. Gutierrez-Miravete, E.J. Lavernia, G. Trapaga, J. Szekely, and N.J. Grant:Metall. Trans. A, 1989, vol. 20A, pp. 71–85.

    CAS  Google Scholar 

  38. Yue Wu: Ph.D. Dissertation research, University of California-Irvine, 1991.

  39. R. Willnecker, D.M. Herlach, and B. Feuerbacher:Appl. Phys. Lett. 1986, vol. 49, p. 1339.

    Article  CAS  Google Scholar 

  40. M. Libera: Sc.D. Thesis, Massachusetts Institute of Technology; presented at the TMS-AIME annual meeting, Jan. 25–28, Phoenix, AZ, June 1987.

  41. M. Gupta, J. Juarez-Islas, W.E. Frazier, F.A. Mohamed, and E.J. Lavernia: University of California-Irvine, unpublished research, 1991.

  42. T. Mikami, R.G. Cox, and S.G. Mason:Int. J. Multiphase Flow, 1975, vol. 2, p. 113.

    Article  Google Scholar 

  43. H. Lubanska:J. Met., 1970, vol. 22, p. 45.

    CAS  Google Scholar 

  44. E. Lavernia, E. Gutierrez, J. Szekely, and N.J. Grant:Int. J. Rapid Solidification, 1988, vol. 4, p. 89.

    CAS  Google Scholar 

  45. G.H. Geiger and D.R. Poirier:Transport Phenomena in Metallurgy, Addison-Wesley Publishing Company, Reading, MA, 1973, p. 134.

    Google Scholar 

  46. A.H. Shapiro:The Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press, New York, NY, 1953, vol. 1, p. 85.

    Google Scholar 

  47. O.S. Nichiporenko and Y.I. Naida:Sov. Powd. Metall. Met. Ceram., 1968, vol. 70, p. 1; 1968, vol. 67 (7), p. 509; and 1976, vol. 15 (9), p. 665.

    Google Scholar 

  48. J.C. Baram, M.K. Veistinen, E.J. Lavernia, M. Abinante, and N.J. Grant:J. Mater. Sci., 1988, vol. 23, p. 2457.

    Article  CAS  Google Scholar 

  49. E.J. Lavernia, E. Gutierrez, J. Szekely, and N.J. Grant:Proc. 1987 Annual Powder Metallurgy Conf. and Exhibition, Progress in Powder Metallurgy, May 17–20, 1987, Dallas, TX, Metal Powder Industries Federation, Princeton, NJ, vol. 43, p. 683.

    Google Scholar 

  50. E. Gutierrez, E.J. Lavernia, G. Trapaga, and J. Szekely:Int. J. Rapid Solidification, 1988, vol. 4 (1-2), p. 125.

    Google Scholar 

  51. W.E. Ranz and W.R. Marshall:Chem. Eng. Prog., 1952, vol. 48, p. 173.

    CAS  Google Scholar 

  52. R.H. Doremus:Rates of Phase Transformations, Academic Press, New York, NY, 1985, p. 116.

    Google Scholar 

  53. S.R. Coriell and D. Turnbull:Acta Metall., 1982, vol. 30, p. 2135.

    Article  CAS  Google Scholar 

  54. J.W. Cahn, W.B. Hillig, and G.W. Sears:Acta Metall., 1964, vol. 12, p. 1421.

    Article  CAS  Google Scholar 

  55. E. Gutierrez-Miravete and E.J. Lavernia:Conf. Proc, Physical Chemistry of Powder Metals Production and Processing, W. Murray Small, ed., TMS, Warrendale, PA, 1989, p. 175.

    Google Scholar 

  56. R.D. Pehlke, A. Jeyarajan, and H. Wada: NSF Report, Grant No. DAR78-26171, Dec. 1982.

  57. H. Kurten, J. Raasch, and H. Rumpf:Chemie-Ingenieur-Technik, 1966, vol. 38 (9), p. 941.

    Article  Google Scholar 

  58. Frank P. Incropera and David P. DeWitt:Introduction to Heat Transfer, John Wiley and Sons, New York, NY, 1985, p. 62.

    Google Scholar 

  59. P.S. Grant, W.T. Kim, B.P. Bewlay, and B. Cantor:Scripta Metall., 1986, vol. 23, p. 1651.

    Google Scholar 

  60. Manoj Gupta, Farghalli Mohamed, and Enrique Lavernia:Metall. Trans. A, 1992, vol. 23A, pp. 845–50.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Mohamed, F. & Lavernia, E. The Effect of ceramic reinforcements during spray atomization and codeposition of metal matrix composites: part i. heat transfer. Metall Trans A 23, 831–843 (1992). https://doi.org/10.1007/BF02675560

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02675560

Keywords

Navigation