Skip to main content
Log in

The modeling of pool profiles, temperature profiles and velocity fields in ESR systems

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Through the simultaneous statement of Maxwell’s equations, the turbulent Navier-Stokes equations and the differential thermal energy balance equations a mathematical model has been developed to represent the pool profiles, the velocity fields and the temperature profiles in an ESR system. The major advance over earlier modeling efforts is the fact that the model is capable of predicting the pool profiles from first principles. The theoretically predicted pool profiles and temperature fields were found to be in reasonable agreement with experimental measurements reported by Mellberg for a laboratory scale system. The model is used to investigate the interdependence of key process parameters, with the power input, fill ratio, amount of slag used and the position of the electrode as the independent variables and the casting rate, pool depth, velocity and temperature fields as the dependent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. C. Sun and J. W. Pridgeon:Second Int. Symp. on ESR, Mellon Institute, Pittsburgh, PA, 1969.

    Google Scholar 

  2. M. A. Maulvault: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1971.

    Google Scholar 

  3. A. Mitchell, J. Szekely, and J. F. Elliott:Proc. Conference on ESR, p. 3, British Iron and Steel Institute, Sheffield, England, 1973.

    Google Scholar 

  4. B. E. Paton, B. I. Medovar, D. A. Kozlitin, Yu. G. Emel’yanenko, Yu. A. Stenerbogen, and V. M. Baglai:ibid. p. 16.

    Google Scholar 

  5. A. S. Ballantyne and A. Mitchell:Ironmaking Steelmaking, 1977, no. 4, pp. 222–39.

  6. A. H. Dilawari and J. Szekely:Met. Trans. B, 1977, vol. 8B, pp. 227–36.

    Article  Google Scholar 

  7. A. H. Dilawari and J. Szekely:Proc. Fifth Int. Conf. on Vac. Met. and ESR Process, p. 157, Leybold-Heraeus Gmbh & Co. KG, Munich, 1976.

    Google Scholar 

  8. A. H. Dilawari and J. Szekely:Met. Trans. B, 1978, vol. 9B, pp. 77–87.

    Article  CAS  Google Scholar 

  9. J. Kreyenberg and K. Schwerdtfeger:Arch. Eisenhuttenwes., 1979, no. l, pp. 1–6.

  10. P. O. Mellberg:Proc. Fourth Int. Symp. on ESR, p. 13, The Iron and Steel Institute of Japan, Tokyo, 1973.

    Google Scholar 

  11. J. Campbell:J. Met., July 1970, vol. 22, pp. 23–35.

    CAS  Google Scholar 

  12. K. E. Spelles:Proc. Phys. Soc, 1952, vol. 65B, p. 541.

    Google Scholar 

  13. S. Hu and R. C. Kinter:J. Am. Inst. Chem. Eng., 1955, vol. 1, pp. 42–48.

    CAS  Google Scholar 

  14. A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding, and M. Wolfshetein:Heat and Mass. Transfer in Recirculating Flows, p. 18, Academic Press, London and New York, 1969.

    Google Scholar 

  15. B. E. Launder and D. B. Spalding:Computer Methods in Applied Mechanics and Engr., 1974, vol. 3, pp. 269–89.

    Article  Google Scholar 

  16. A. Mitchell and J. Cameron:Met. Trans., 1971, vol. 2, pp. 3361–66.

    CAS  Google Scholar 

  17. M. K. Choudhary: Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, M., Szekely, J. The modeling of pool profiles, temperature profiles and velocity fields in ESR systems. Metall Trans B 11, 439–453 (1980). https://doi.org/10.1007/BF02676888

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676888

Keywords

Navigation