Skip to main content
Log in

The role of plastic anisotropy in the fatigue behavior of zircaloy

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The changes in the plastic properties and the mode of fracture were examined with highly textured Zircaloy under strain-controlled push-pull cyclic loading condition. Since the loading direction was nearly normal to the (0002) poles of hcp structure, deformation occurred predominantly by prism slip. Different twinning systems were also activated when the sign of shear stress changed. The magnitude of plastic anisotropy also changed differently for warm cross-rolled and recrystallized materials. In spite of these structural anomalies, the Coffin-Manson relationship was obeyed, independent of the particular method used for control of diametral strain limits. Depending on the particular orientation of specimen surface, the process of crack initiation could be closely related to the detailed slip morphology. The crack propagation, however, occurred in the direction normal to the surface where the corresponding plastic strain range was the largest. Twinning was also shown to contribute importantly to the process of fracture in the cyclic loading condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Hosford, Jr. and W. A. Backofen: Fundamentals of Deformanon Processing, W. A. Backofen et al., eds., pp. 259–98, Syracuse Univ. Press, Syracuse, N. Y., 1964.

    Google Scholar 

  2. D. Lee and W. A. Backofen: Trans. TMS-AIME, 1966, vol. 236, pp. 1077–84.

    Google Scholar 

  3. D. Lee: Trans. ASM, 1968, vol. 61, pp. 742–49.

    Google Scholar 

  4. E. J. Rapperport and C. S. Hartley Trans. TMS-AIME, 1960, vol. 218, pp. 869–77.

    Google Scholar 

  5. F. D. Rosi, F C. Perkins and S. S. Seigle Trans. AIME, 1956, vol 206, pp. 115–23.

    Google Scholar 

  6. R. E. Reed-Hill: Deformation Twinning, R. E. Reed-Hill et al., eds., pp. 295–320, Gordon and Breach, N. Y., 1964.

    Google Scholar 

  7. W. G. Dorfeld and D. Lee. Met. Trans., 1970, vol. 1, pp. 321–22.

    Google Scholar 

  8. R. K. McGeary and B. Lustman: Trans. AIME, 1951, vol. 191, pp. 994–1002.

    Google Scholar 

  9. T. Slot, R. H. Stentz, and J. T. Berling Am. Soc. Test. Mater., Spec. Tech. Publ., 465, pp. 100–28, ASTM, Phdadelphla, Pa., 1969.

    Google Scholar 

  10. D. C. Lord and L. F. Coffin, Jr.: Am. Soc. Test. Mater., Spec.Tech. Publ 465, pp. 129–48, ASTM, Philadelphia, Pa., 1969.

    Google Scholar 

  11. L. F. Coffin, Jr.: Trans. TMS-AIME, 1959, vol. 215, pp. 794–807.

    Google Scholar 

  12. C. E. Feltner and C. Laird: Acta Met, 1967, vol. 15, pp. 1621–53.

    Article  Google Scholar 

  13. J. Morrow: Am. Soc Test. Mater., Spec. Tech. Publ. 378, pp. 45–84, ASTM, Philadelphia, Pa, 1965.

    Google Scholar 

  14. See also, J. C. Grosskreutz: To be published in the Am. Soc. Test. Mater., Spec. Tech. Publ. on Fatigue Damage.

  15. L. F. Coffin, Jr.: Trans. ASME, 1954, vol. 76, pp. 931–49.

    Google Scholar 

  16. S. S. Manson: NASA Tech Note 2933, NASA 1954.

    Google Scholar 

  17. N. Thompson, N. Wadsworth, and N. Lowat: Phil Mag., 1956, vol 1, pp. 113–26.

    Article  Google Scholar 

  18. T. H. Alden and W. A. Backofen: Acta Met, 1961, vol. 9, pp. 352–66.

    Article  Google Scholar 

  19. W. A. Wood, S. Causland, and K. R. Sargent: Acta Met., 1963, vol. 11, pp. 643–652.

    Article  Google Scholar 

  20. A. J. McEvily and R. C. Boettner. Acta Met, 1963, vol. 11, pp. 725–43.

    Article  Google Scholar 

  21. D. Lee and W. A. Backofen: Trans. TMS-AIME, 1966, vol. 236, pp. 1696–1704.

    Google Scholar 

  22. R. W. Armstrong and G. T. Home: J. Inst. Metals. 1962-63, vol. 91, pp. 311–15.

    Google Scholar 

  23. P. G. Partridge: Phil. Mag., 1965, vol. 12, pp. 1043–54.

    Article  Google Scholar 

  24. C. J. Beevers and M. D. Halliday: Met. Sci. J., 1969, vol. 3, pp. 74–79.

    Article  Google Scholar 

  25. M. R. Warren and C. J. Beevers: Met. Trans., 1970, vol. 1, pp. 1657–61.

    Article  Google Scholar 

  26. L. F. Coffin, Jr.: Appl. Mater. Res., 1962, vol. 1, pp. 129–41.

    Google Scholar 

  27. See also, L. F. Coffin, Jr.: Fatigue-An Interdisciplinary Approach, J. J. Burke et al eds., pp. 173–176, Syracuse Univ. Press, Syracuse, N. Y., 1964.

    Google Scholar 

  28. S. S. Manson and M. H. Hirschberg: Fatigue-An Interdisciplinary Approach, J. J. Burke etal., eds., pp. 133–73, Syracuse Univ. Press, Syracuse, N. Y., 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D. The role of plastic anisotropy in the fatigue behavior of zircaloy. Metall Trans 3, 315–322 (1972). https://doi.org/10.1007/BF02680611

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02680611

Keywords

Navigation