Skip to main content
Log in

Mechanical valve closing dynamics: Relationship between velocity of closing, pressure transients, and cavitation initiation

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, the closing dynamics of mechanical heart valves was experimentally analyzed with the valves mounted in the mitral position of anin vitro flow chamber simulating a single closing event. The average linear velocity of the edge of the leaflet during the final 2.065° of the traverse before closing was measured using a laser sweeping technique, and the negative pressure transients at 2 mm from the leaflet inflow surface in the fully closed position was recorded at the instant of valve closure. The cavitation number was computed for the various mechanical valves at a range of load at valve closure. The data were correlated with cavitation bubble visualization previously obtained with the same experimental set up. Cavitation incipience with mechanical valves was found to be independent of the flexibility of the valve holder. For the same loading rate at valve closure, valves with flexible (polyethylene) leaflets were found to close with comparable velocity to those with rigid (pyrolytic carbon) leaflets, but the negative pressure transients did not reach magnitudes close to the vapor pressure for the fluid with flexible leaflets. For the same leaflet closing velocity (and hence the cavitation number), valves with a seat stop or a seating lip in the region of maximum leaflet velocity were observed to cavitate earlier, suggesting that the effect of “squeeze flow” may be an important factor in cavitation incipience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bluestein, D., S. Einav, and N. H. C. Hwang. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis.J. Biomech. 27:1369–1378, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Chandran, K. B. Cardiovascular Biomechanics. New York: New York University Press, 1992, 544 pp.

    Google Scholar 

  3. Chandran, K. B., G. N. Cabell, B. Khalighi, and C. J. Chen. Laser anemometry measurements of pulsatile flow past aortic valve prostheses.J. Biomech. 16:865–873, 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Chandran, K. B., C. S. Lee, and L. D. Chen. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation.J. Heart Valve Dis. 3 (Suppl. I):S65-S76, 1994.

    PubMed  Google Scholar 

  5. Cheon, C. J., and K. B. Chandran. Dynamics of a mechanical monoleaflet heart valve prosthesis in the closing phase: effect of squeeze film.Ann. Biomed. Eng. 23:189–197, 1995.

    Article  Google Scholar 

  6. Dellsperger, K. C., and K. B. Chandran. Prosthetic heart valves. In: Blood compatible materials and devices, edited by C. P. Sharma and M. Szycher. Lancaster: Technomic Publishing Co., 1991, pp. 153–166.

    Google Scholar 

  7. Deuvaert, F. E., J. Devriendt, and J. Massaut. Leaflet escape of a mitral Duromedics prosthesis (case report).Acta Chir. 89:15–18, 1989.

    CAS  Google Scholar 

  8. Dimitri, W. R., and B. T. Williams. Fracture of the Duromedics mitral valve housing with leaflet escape.J. Cardiovasc. Surg. 31:41–46, 1990.

    CAS  Google Scholar 

  9. Garrison, L. A., T. C. Lamson, S. Deutsch, D. B. Geselowitz, R. P. Gaumond, and J. M. Tarbell. An in-vitro investigation of prosthetic heart valve cavitation in blood.J. Heart Valve Dis. 3(Suppl. I):S8-S24, 1994.

    PubMed  Google Scholar 

  10. Graf, T., H. Fischer, H. Reul, and G. Rau. Cavitation potential of mechanical heart valve prostheses.Int. J. Artif. Org. 14:169–174, 1991.

    CAS  Google Scholar 

  11. Graf, T., H. Reul, C. Detlefs, R. Wilmes, and G. Rau. Causes and formation of cavitation in mechanical heart valves.J. Heart Valve Dis. 3(Suppl. I):S49-S64, 1994.

    PubMed  Google Scholar 

  12. Graf, T., H. Reul, W. Dietz, R. Wilmes, and G. Rau. Cavitation at mechanical heart valves under simulated physiological conditions.J. Heart Valve Dis. 1:131–141, 1992.

    PubMed  CAS  Google Scholar 

  13. Guo, G. X., P. Adlparvar, M. Howanec, J. Roy, R. Kafesjian, and C. Kingsbury. Effect of structural compliance on cavitation threshold measurement of mechanical heart valves.J. Heart Valve Dis. 3(Suppl. I):S77-S84, 1994.

    PubMed  Google Scholar 

  14. Guo, G. X., C. C. Xu, and N. H. C. Hwang. The closing velocity of Baxter Duromedic heart valve prostheses.ASAIO Trans. 36:M529-M532, 1990.

    PubMed  CAS  Google Scholar 

  15. Hjelms, E. Escape of a leaflet from a St. Jude medical prosthesis in the mitral position.J. Thorac. Cardiovasc. Surg. 31:310–312, 1983.

    Article  CAS  Google Scholar 

  16. Kafesjian, R., M. Howanec, G. D. Ward, L. Diep, L. S. Wagstaff, and R. Rhee. Cavitation damage of pyrolytic carbon in mechanical heart valves.J. Heart Valve Dis. 3(Suppl. I):S2-S7, 1900.

    Google Scholar 

  17. Klepetko, W., A. Moritz, G. Mlzoch, H. Schurawitzki, E., Domanis, and E. J. Wolner. Leaflet fracture in Edwards Duromedics bileaflet valves.J. Thorac. Cardiovasc. Surg. 97:90–94, 1989.

    PubMed  CAS  Google Scholar 

  18. Kumar, N., S. Balasundaram, M. Rickard, N. al Halees, and C. M. Duran. Leaflet embolization from Duromedics valves: a report of two cases.Thorac. Cardiovasc. Surgeon 39:382–383, 1991.

    CAS  Google Scholar 

  19. Lawrie, J. W. Glycerol and the Glycols. New York: The Chemical Engineering Catalog Company, 1928.

    Google Scholar 

  20. Lee, C. S., S. Aluri, and K. B. Chandran. Effect of valve holder flexibility on cavitation initiation with mechanical heart valve prostheses: an in vitro study.J. Heart Valve Dis. 5:104–113, 1996.

    PubMed  CAS  Google Scholar 

  21. Lee, C. S., K. B. Chandran, and L. D. Chen. Cavitation dynamics of mechanical heart valve prostheses.Artif. Org. 18:758–767, 1994.

    CAS  Google Scholar 

  22. Lee, C. S., K. B. Chandran, and L. D. Chen. Cavitation dynamics of Medtronic Hall mechanical heart valve prosthesis: fluid squeezing effect.ASME J. Biomech. Eng. 118:97–105, 1996.

    CAS  Google Scholar 

  23. Leuer, L. Dynamics of the mechanical valves in the artificial heart. In: Proceedings of the 40th ACEMB, Niagara Falls, NY, 1987, p. 82.

  24. Makhijani, V. B., H. Q. Yang, A. K. Singhal, and N. H. C. Hwang. Computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.J. Heart Valve Dis. 3(Suppl. I):S35-S48, 1994.

    PubMed  Google Scholar 

  25. Wu, Z. J., M. C. S. Shu, D. R. Scott, and N. H. C. Hwang. The closing behavior of Medtronic Hall mechanical heart valves.ASAIO J. 40:M702-M706, 1994.

    PubMed  CAS  Google Scholar 

  26. Wu, Z. J., Y. Wang, and N. H. C. Hwang. Occluder closing behavior: a key factor in mechanical heart valve cavitation.J. Heart Valve Dis. 3(Suppl. I):S25-S34, 1994.

    PubMed  Google Scholar 

  27. Yoganathan, A. P. Cardiac valve prostheses. In: The biomedical engineering handbook, edited by J. D. Bronzino. Boca Raton, FL: CRC Press, Inc., 1995, pp. 1847–1870.

    Google Scholar 

  28. Yoganathan, A. P., Y. R. Woo, and H. W. Sung. Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses.J. Biomech. 19:433–442, 1986.

    Article  PubMed  CAS  Google Scholar 

  29. Young, R. F. Cavitation. London: McGraw-Hill Book Co., 1989, 418 pp.

    Google Scholar 

  30. Zapanta, C. M., E. G. Liszka Jr., T. C. Lamson, D. R. Stinebring, S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. A method for real-time in vitro observation of cavitation on prosthetic heart valves.ASME J. Biomech. Eng. 116:460–468, 1994.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, K.B., Aluri, S. Mechanical valve closing dynamics: Relationship between velocity of closing, pressure transients, and cavitation initiation. Ann Biomed Eng 25, 926–938 (1997). https://doi.org/10.1007/BF02684129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684129

Keywords

Navigation