Skip to main content
Log in

Anin vitro traumatic injury model to examine the response of neurons to a hydrodynamically-induced deformation

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A novelin vitro system was developed to examine the effects of traumatic mechanical loading on individual cells. The cell shearing injury device (CSID) is a parallel disk viscometer that applies fluid shear stress with variable onset rate. The CSID was used in conjunction with microscopy and biochemical techniques to obtain a quantitative expression of the deformation and functional response of neurons to injury. Analytical and numerical approximations of the shear stress at the bottom disk were compared to determine the contribution of secondary flows. A significant portion of the shear stress was directed in ther-direction during start-up, and therefore the full Navier-Stokes equation was necessary to accurately describe the transient shear stress. When shear stress was applied at a high rate (800 dyne cm−2 sec−1) to cultured neurons, a range of cell membrane strains (0.01 to 0.53) was obtained, suggesting inhomogeneity in cellular response. Functionally, cytosolic calcium and extracellular lactate dehydrogenase levels increased in response to high strain rate (>1 sec−1) loading, compared with quasistatic (<1 sec−1) loading. In addition, a subpopulation of the culture subjected to rapid deformation subsequently died. These strain rates are relevant to those shown to occur in traumatic injury, and as such, the CSID is an appropriate model for studying the biomechanics and pathophysiology of neuronal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbee, K. A., E. J. Macarak, and L. E. Thibault. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation.Ann. Biomed. Eng. 22: 14–22, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Cargill, R. S., and L. E. Thibault. Acute alterations in [Ca2+]i in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: anin vitro model for neural trauma.J. Neurotrauma 13:395–407, 1996.

    PubMed  Google Scholar 

  3. Davies, P. F., F. Dewy, S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone. Influence of hemodynamic forces on vascular endothelial function.J. Clin. Invest 73:1121–1129, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Dewey, C. F. J., and S. R. Bussolari. The dynamic response of vascular endothelial cells to fluid shear stress.J. Biomech. Eng. 103:177–185, 1981.

    PubMed  Google Scholar 

  5. Ellis, E. F., J. S. McKinney, K. A. Willoughby, S. Liang, and J. T. Polishock. A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes.J. Neurotrauma 12:325–339, 1995.

    PubMed  CAS  Google Scholar 

  6. Evans, E., and B. Kukan. Passive mechanical behavior of granulocytes based on large deformation and recovery after deformation tests.Blood 64:1028–1035, 1984.

    PubMed  CAS  Google Scholar 

  7. Galbraith, J., and L. E. Thibault. Mechanically induced depolarizations in the squid giant axon.J. Biomech. Eng. 115: 13–22, 1993.

    PubMed  CAS  Google Scholar 

  8. Ganot, G., B. Wong, L. Binstock, and G. Eherenstein. Reversal potentials corresponding to mechanical stimulation and leakage current in Myxicola giant axons.Biochim. Biophys. Acta 649:487–491, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Gennarelli, T. A.. Mechanisms of brain injury.J. Emerg. Med. 11:5–11, 1993.

    PubMed  Google Scholar 

  10. Gennarelli, T. A., and L. E. Thibault. Biological models of head injury. In: Central nervous system trauma status report, edited by J. T. Povlishock, Bethesda, MD: NINCDS, NIH, Public Health Services, 1984.

    Google Scholar 

  11. Graham, D. I., J. H. Adams, D. Doyle, I. Ford, T. A. Gennarelli, A. E. Lawrence, W. L. Maxwell, and D. R. McLellan. Quantification of primary and secondary lesions in severe head injury.Acta Neurochir. 57:41–48, 1993.

    CAS  Google Scholar 

  12. Guilak, F.. Volume and surface area measurement of viable chondrocytesin situ using geometric modelling of serial confocal sections.J. Microsc. 173:245–256, 1994.

    PubMed  CAS  Google Scholar 

  13. Hyman, W. A.. Shear flow over a protrusion from a plane wall.J. Biomech. 5:45–48, 1972.

    Article  PubMed  CAS  Google Scholar 

  14. Landsman, A. S., D. F. Meaney, R. S. Cargill, E. J. Macarak, and L. E. Thibault. 1995 William J. Stickel Gold Award. High strain rate tissue deformation: a theory on the mechanical etiology of diabetic foot ulcerations.J. Am. Podiatr. Med. Assoc. 85:519–527, 1995.

    PubMed  CAS  Google Scholar 

  15. Leal, G. L. Laminar Flow and Convective Processes: Scaling Principles and Asymptotic Analysis. Boston: Butterworth-Heinemann, 1992.

    Google Scholar 

  16. Levich, V. G. Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1962.

    Google Scholar 

  17. Lucas, J. H., and A. Wolf.In vitro studies of multiple impact injury to mammalian CNS neurons: prevention of perikaryal damage and death by ketamine.Brain Res. 543:181–193, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Margulies, S. S., L. E. Thibault, and T. A. Gennarelli. Physical model simulations of brain injury in the primate.J. Biomech. 23:823–836, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Nomura, H., C. Ishikawa, T. Komatsuda, J. Ando, and A. Kamiya. A disk-type apparatus for applying fluid shear stress on cultured endothelial cells.Biorheology 25:461–470, 1988.

    PubMed  CAS  Google Scholar 

  20. Orrenius, S., D. J. McConkey, G. Bellomo, and P. Nicotera. Role of Ca2+ in toxic cell killing.Trends Pharmacol. Sci. 10:281–285, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Pleasure, S. J., C. Page, and V. M. Y. Lee. Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons.J. Neurosci. 12:1802–1815, 1992.

    PubMed  CAS  Google Scholar 

  22. Rand, R. P., and A. C. Burton. Mechanical properties of the red cell membrane.Biophys. J. 4:115–135, 1964.

    Article  PubMed  CAS  Google Scholar 

  23. Saatman, K. E., and L. E. Thibault. Axonal injury studied in a single myelinated nerve fiber model.J. Neurotrauma 11: 125, 1994.

    Google Scholar 

  24. Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties.J. Biomech. Eng. 112:263–268, 1990.

    PubMed  CAS  Google Scholar 

  25. Schanne, F. A. X., A. B. Kane, E. E. Young, and J. L. Farber. Calcium dependence of toxic cell death: a final common pathway.Science 206:700–702, 1979.

    Article  PubMed  CAS  Google Scholar 

  26. Shepard, S. R., J. B. G. Ghajar, R. Giannuzzi, S. Kupferman, and R. J. Hariri. Fluid percussion barotrauma chamber: a newin vitro model for traumatic brain injury.J. Surg. Res. 51:417–424, 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Siesjo, B. K.. Basic mechanisms of traumatic brain damage.Ann. Emerg. Med. 22:959–969, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Simon, S. I., and G. W. Schmid-Schonbein. Cytoplasmic strains and strain rates in motile polymorphonuclear leukocytes.Biophys. J. 58:319–332, 1990.

    PubMed  CAS  Google Scholar 

  29. Thibault, L. E.. Isolated tissue and cellular biomechanics. In: Accidental injury: biomechanics and prevention, edited by R. P. Nahum and J. W. Melvin. New York: Springer-Verlag & Co., 1993, pp. 512–537.

    Google Scholar 

  30. Trump, B. F., and I. K. Berezesky. The role of cytosolic Ca2+ in cell injury, necrosis and apoptosis.Curr. Opin. Cell Biol. 4:227–232, 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Watson, P. A.. Function follows form: generation of intracullular signals by cell deformation.FASEB J. 5:2013–2019, 1991.

    PubMed  CAS  Google Scholar 

  32. Winston, F. L., E. J. Macarak, S. F. Gorften, and L. E. Thibault. A system to reproduce and quantify the biomechanical environment of the cell.J. Appl. Physiol. 67:397–405, 1989.

    PubMed  CAS  Google Scholar 

  33. Zimmermann, U., G. Pilwat, A. Pequeux, and R. Gilles. Electro-mechanical properties of human erthyrocyte membranes: The pressure-dependence of potassium permeability.J. Mem. Biol. 54:103–113, 1980.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaPlaca, M.C., Thibault, L.E. Anin vitro traumatic injury model to examine the response of neurons to a hydrodynamically-induced deformation. Ann Biomed Eng 25, 665–677 (1997). https://doi.org/10.1007/BF02684844

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684844

Keywords

Navigation