Skip to main content
Log in

Steel dissolution in quiescent and gas stirred Fe/C melts

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The dissolution rates of commercial black iron rods in iron/carbon melts under isothermal conditions were measured. The effect of melt carbon content, temperature, natural convection, and gas stirred forced convection conditions were investigated. The experimental data under natural convection conditions (no external stirring) were fitted with a dimensionless correlation for vertical cylinders: Sh = 0.13(Gr . Sc)0.34, representing mass transport control dominated by turbulent natural convection. Under bottom injection gas stirring conditions, it was found that the kinetic power input had little effect on the rod dissolution rates which were controlled by the total gas flow rate. Derived mass transport coefficients under gas stirring conditions were found to have the following dependence on the gas injection rates:k mQ 0.21, wherek m = mass transport coefficient andQ = gas flow rate. A comparison of the experimental results with previously measured mass transfer coefficients under forced convection conditions gave a plume velocity flow rate dependence ofUQ 0.3. A general discussion of gas stirring fluid dynamics and resulting mass transport effects is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Von Bogdandy, K. Brotzmann, and E. Fritz:Steelmaking Pro- ceedings, 1982, vol. 65, pp. 287–95.

    Google Scholar 

  2. K. Brotzmann: Howe Memorial Lecture, AIME 70th Steelmak- ing, 46th Iron Making Conference, Pittsburgh, PA, March 30, 1987.

  3. J. Szekely, Y.K. Chuang, and J.W. Hlinka:Metall. Trans., 1972, vol. 3, pp. 2825–33.

    Article  Google Scholar 

  4. R.D. Pehlke, P.D. Goodell, and R.W. Dunlap:Trans. TMS-AIME, 1965, vol. 233, pp. 1420–27.

    Google Scholar 

  5. M. Kosaka and S. Minowa:Tetsu-to-Hagané, 1967, vol. 53, pp. 983–97.

    Article  Google Scholar 

  6. R.I.L. Guthrie and P. Stubbs:Caq. Metall. Quart., 1973, vol. 12, no. 4, pp. 465–73.

    Article  Google Scholar 

  7. Y-U. Kim and R.D. Pehlke:Metall. Trans., 1974, vol. 5, pp. 2527–32.

    Article  Google Scholar 

  8. R.G. Olsson, V. Koump, and T.F. Perzak:Trans. TMS-AIME, 1965, vol. 233, pp. 1654–57.

    Google Scholar 

  9. R.I.L. Guthrie and L. Gourtsoyannis:Can. Metall. Quart., 1971, vol. 10, no. 1, pp. 37–47.

    Article  Google Scholar 

  10. K. Mori and T. Sakuraya:Trans. I.S.I. Jap., 1982, vol. 22, no. 12, pp. 984–90.

    Google Scholar 

  11. M.A. Glinkov, Yu. P. Filimonov, and V.V. Yurevich:Steel in the USSR, March 1971, pp. 202−03.

  12. T. Lehner, G. Carlsson, and T. Hsiao:Scaninject II, Int. Conf. on Injection Metallurgy, 1980, vol. 1, pp. 22-1 through 22–34.

    Google Scholar 

  13. W.J. Lavender and D.C.T. Pei:Int. J. Heat Mass Transfer, 1967, vol. 10, pp. 529–39.

    Article  Google Scholar 

  14. N. El-Kaddah, J. Szekely, and G. Carlsson:Metall. Trans. B, 1984, vol. 15B, pp. 633–40.

    Article  Google Scholar 

  15. J. Szekely, H.H. Grevet, and N. El-Kaddah:Int. J. Heat and Mass Transfer, 1984, vol. 27, pp. 1116–21.

    Article  Google Scholar 

  16. Y. Sahai and R.I.L. Guthrie:Metall. Trans. B, 1982, vol. 13B, pp. 193–202.

    Article  Google Scholar 

  17. T. Hsiao, T. Lehner, and B. Bjorn:Scand. J. Metallurgy, 1980, vol. 9, pp. 105–10.

    Google Scholar 

  18. U. Landu and C.W. Tobias: 1978 Int. Conf. on Physico-Chem- ical Hydrodynamics, Washington, DC, Nov. 6-8, 1978.

  19. K. Nakanishi, T. Fujii, and J. Szekely:Ironmaking and Steel- making, 1975, no. 3, pp. 193−97.

  20. O. Haidi and J.K. Brimacombe:Proc. Scaninject III, 1983, pp. 5:1−5:17.

  21. A. Murthy and J. Szekely:Metall. Trans. B, 1986, vol. 17B, pp. 487–90.

    Article  Google Scholar 

  22. V. Krujelskis and F. Mucciardi: Paper 1-4, PTD Conf., Chicago, IL, 1981.

  23. G.N. Abramovich:Theory of Turbulents Jets, MIT Press, Cambridge, MA, 1963.

    Google Scholar 

  24. M. Kosaka and S. Minowa:Tetsu-to-Hagané, 1966, vol. 52, pp. 22–37.

    Article  Google Scholar 

  25. J.M. Lommel and B. Chalmers:Trans. TMS-AIME, 1959, vol. 215, pp. 499–508.

    Google Scholar 

  26. J. Szekely and N.J. Themelis:Rate Phenomena in Process Met- allurgy, John Wiley & Sons, New York, NY, 1971, p. 457.

    Google Scholar 

  27. R.N. Barfield and J.A. Kitchener:J. Iron & Steel Inst., 1955, vol. 180, pp. 324–29.

    Google Scholar 

  28. The Making, Shaping, and Treating of Steel, E. McGannon, ed., United States Steel (USS), 1964.

  29. J.F. Elliott, M. Gleiser, and V. Ramakrishna:Thermochemistry for Steelmaking, The American Iron and Steel Institute, Addison- Wesley Pub. Co. Inc., 1963.

    Google Scholar 

  30. M. Jakob:Heat Transfer, John Wiley & Sons, New York, NY, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J.K. Steel dissolution in quiescent and gas stirred Fe/C melts. Metall Trans B 20, 363–374 (1989). https://doi.org/10.1007/BF02696988

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02696988

Keywords

Navigation