Skip to main content
Log in

Abstract

Geometric Invariant Theory gives a method for constructing quotients for group actions on algebraic varieties which in many cases appear as moduli spaces parameterizing isomorphism classes of geometric objects (vector bundles, polarized varieties, etc.). The quotient depends on a choice of an ample linearized line bundle. Two choices are equivalent if they give rise to identical quotients. A priori, there are infinitely many choices since there are infinitely many isomorphism classes of linearized ample line bundles. Hence several natural questions arise. Is the set of equivalence classes, and hence the set of non-isomorphic quotients, finite? How does the quotient vary under change of the equivalence class? In this paper we give partial answers to these questions in the case of actions of reductive algebraic groups on nonsingular projective algebraic varieties. We shall show that among ample line bundles which give projective geometric quotients there are only finitely many equivalence classes. These classes span certain convex subsets (chambers) in a certain convex cone in Euclidean space, and when we cross a wall separating one chamber from another, the corresponding quotient undergoes a birational transformation which is similar to a Mori flip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Atiyah, Convexity and commuting Hamiltonians,Bull. London Math. Soc. 14 (1982), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Bialynicki-Birula, Some theorems on actions of algebraic groups,Ann. of Math. 98 (1973), 480–497.

    Article  MathSciNet  Google Scholar 

  3. A. Bialynicki-Birula andA. Sommese, Quotients by C* and SL(2, C) actions,Trans. Amer. Math. Soc. 279 (1983), 773–800.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Bourbaki,Commutative Algebra, Berlin, New York, Springer-Verlag, 1989.

    MATH  Google Scholar 

  5. M. Brion, Sur l’image de l’application moment, in «Séminaire d’algèbre Paul Dubreil et Marie-Paule Mallivain »,Lecture Notes in Math. 1296, Paris, 1986, 177–193.

    MathSciNet  Google Scholar 

  6. M. Brion andC. Procesi, Action d’un tore dans une variété projective, in «Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory »,Progress in Mathematics 192 (1990), Birkhäuser, 509–539.

    MathSciNet  Google Scholar 

  7. M. Goresky andR. MacPherson, On the topology of algebraic torus actions, in «Algebraic Groups, Utrecht 1986 »,Lect. Notes in Math. 1271 (1986), 73–90.

    MathSciNet  Google Scholar 

  8. V. Guillemin andS. Sternberg, Birational equivalence in the symplectic category,Invent. Math. 97 (1989), 485–522.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Hesselink, Desingularization of varieties of null forms,Invent. Math. 55 (1979), 141–163.

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. Hu, The geometry and topology of quotient varieties of torus actions,Duke Math. Journal 68 (1992), 151–183.

    Article  MATH  Google Scholar 

  11. Y. Hu, (W, R) matroids and thin Schubert-type cells attached to algebraic torus actions,Proc. of Amer. Math. Soc. 123 No. 9 (1995), 2607–2617.

    Article  MATH  Google Scholar 

  12. G. Kempf, Instability in invariant theory,Ann. of Math. 108 (1978), 299–316.

    Article  MathSciNet  Google Scholar 

  13. G. Kempf andL. Ness, The length of vectors in representation spaces, in «Algebraic geometry, Copenhagen 1978 »,Lecture Notes in Math. 732 (1979), Springer-Verlag, 233–243.

    MathSciNet  Google Scholar 

  14. F. Kirwan,Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, 1984.

  15. F. Kirwan, Partial desingularization of quotients of nonsinguler varieties and their Betti numbers,Annals of Math. 122 (1985), 41–85.

    Article  MathSciNet  Google Scholar 

  16. F. Knop, H. Kraft, T. Vust, The Picard group of a G-variety, in «Algebraic transformation groups and invariant theory », DMV Seminar, B. 13, Birkhäuser, 1989, 77–87.

  17. S. Kleiman, Towards a numerical criterion of ampleness,Annals of Math. (2)84 (1966), 293–344.

    Article  MathSciNet  Google Scholar 

  18. M. Kapranov, B. Sturmfels, A. Zelevinsky, Quotients of toric varieties,Math. Ann. 290 (1991), 643–655.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, in «Séminaire François Norguet 1975/77 »,Lect. Notes in Math. 670 (1978), 140–186.

    Article  MathSciNet  Google Scholar 

  20. D. Mumford, J. Fogarty, F. Kirwan,Geometric Invariant Theory, 3rd edition, Berlin, New York, Springer-Verlag, 1994.

    Google Scholar 

  21. L. Ness, Mumford’s numerical function and stable projective hypersurfaces, in «Algebraic geometry, Copenhagen 1978 »,Lecture Notes in Math. 732 (1979), Springer-Verlag, 417–453.

    MathSciNet  Google Scholar 

  22. L. Ness, A stratification of the null cone via the moment map,Amer. Jour. of Math. 106 (1984), 1281–1325.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Reid,What is a flip, preprint, Utah, 1992, 17 p.

  24. N. Ressayre,Variation de quotients en théorie des invariants, Mémoire de DEA ENS-Lyon, septembre 1996.

  25. R. Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations,Annals of Math. 141 (1995), 87–129.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Thaddeus, Stable pairs, linear systems and the Verlinde formula,Invent. Math. 117 (1994), 317–353.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Thaddeus, Geometric invariant theory and flips,Journal of the American Math. Society (to appear).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by a NSF grant.

Research supported in part by NSF grant DMS 9401695.

About this article

Cite this article

Dolgachev, I.V., Hu, Y. Variation of geometric invariant theory quotients. Publications Mathématiques de L’Institut des Hautes Scientifiques 87, 5–51 (1998). https://doi.org/10.1007/BF02698859

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698859

Keywords

Navigation