Skip to main content
Log in

Surface chemical structures of CoO x /TiO2 catalysts for continuous wet trichloroethylene oxidation

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An earlier sample of 5% CoO x /TiO2 used for the wet oxidation of TCE at 310 K forca. 6 h has been characterized with a fresh catalystvia XRD and XPS measurements. The binding energy for Co 2p3/2 of the fresh sample appeared at 781.3 eV, which was very similar to the chemical states of CoTiO x such as Co2TiO4 and CoTiO3, whereas the spent catalyst indicated a 780.3-eV main peak for Co 2p3/2 with a satellite structure at a higher energy region. This binding energy was almost equal to that of Co3O4 among reference Co compounds used. The phase structure of Co3O4 was revealed upon XRD measurements for all the catalyst samples. Based on these XPS and XRD results, a surface chemical structure of CoO x species existing with the fresh catalyst can be proposed to be predominantly Co3O4 encapsulated completely by very thin filmlike CoTiO x consisting of Co2TiO4 and/or CoTiO3, with a tiny amount of Co3O4 particles covered partially by such cobalt titanates which may be responsible to the initial catalytic activity. Those CoTiO x overlayers on Co3O4 particles may be readily removed into the wet media within 1 h at 310 K based on our earlier study, thereby giving rapid increase in the catalytic activity for that period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brik, Y., Kacimi, M., Ziyad, M. and Bozon-Verduraz, F., “Titania-Supported Cobalt and Cobalt-Phosphorus Catalysts: Characterization and Performances in Ethane Oxidative Dehydrogenation”,J. Catal.,202, 118 (2001).

    Article  CAS  Google Scholar 

  • Chuang, T. J., Brundle, C. R. and Rice, D. W., “Interpretation of the X-ray Photoemission Spectra of Cobalt Oxides and Cobalt Oxide Surfaces”,Surf. Sci.,59, 413 (1976).

    Article  CAS  Google Scholar 

  • Drago, R. S., Jurczyk, K., Singh, D. J. and Young, V., “Low-Temperature Deep Oxidation of Hydrocarbons by Metal Oxides Supported on Carbonaceous Materials”,Appl. Catal. B,6, 155 (1995).

    Article  CAS  Google Scholar 

  • Frydman, A., Castner, D. G., Schmal, M. and Campbell, C. T., “Particle and Phase Thicknesses from XPS Analysis of Supported Bimetallic Catalysts: Calcined Co-Rh/Nb2O5”,J. Catal.,152, 164 (1995).

    Article  CAS  Google Scholar 

  • Haumodi, S., Larachi, R. and Sayari, A., “Wet Oxidation of Phenolic Solutions over Heterogeneous Catalysts: Degradation Profile and Catalyst Behavior”,J. Catal.,177, 247 (1998).

    Article  Google Scholar 

  • Ho, S. W., Cruz, J. M., Houalla, M. and Hercules, D. M., “The Structure and Activity of Titania Supported Cobalt Catalysts”,J. Catal.,135, 173 (1992).

    Article  CAS  Google Scholar 

  • Hocevar, S., Batista, J. and Levec, J., “Wet Oxidation of Phenol on Ce1-x-CuxO2-d Catalyst”,J. Catal.,184, 39 (1999).

    Article  CAS  Google Scholar 

  • Hosokawa, S., Kanai, H., Utani, K., Taniguchi, Y. I., Saiti, Y. and Imamura, S., “State of Ru on CeO2 and Its Catalytic Activity in the Wet Oxidation of Acetic Acid”,Appl. Catal. B,45, 181 (1998).

    Article  Google Scholar 

  • Kim, M. H. and Choo, K. H., “Catalytic Wet Oxidation of TCE over Supported Metal Oxides”,Theor. Appl. Chem. Eng.,9, 1180 (2004).

    Google Scholar 

  • Kim, M. H., Ebner, J. R., Friedman, R. M. and Vannice, M. A., “Determination of Metal Dispersion and Surface Composition in Supported Cu-Pt Catalysts”,J. Catal.,208, 381 (2002).

    Article  CAS  Google Scholar 

  • Kim, J. H. and Lee, H. I., “Effect of Surface Hydroxyl Groups of Pure TiO2 and Modified TiO2 on the Photocatalytic Oxidation of Aqueous Cyanide”,Korean J. Chem. Eng.,21, 116 (2004).

    Article  CAS  Google Scholar 

  • Kim, M. J., Nam, W. and Han, G.Y., “Photocatalytic Oxidation of Ethyl Alcohol in an Annulus Fluidized Bed Reactor”,Korean J. Chem. Eng.,21, 721 (2004).

    Article  CAS  Google Scholar 

  • Kim, M. H., Nam, I. S. and Kim, Y.G., “Characteristics of Mordenite-Type Zeolite Catalysts Deactivated by SO2 for the Reduction ofNO with Hydrocarbons”,J. Catal.,179, 350 (1998).

    Article  CAS  Google Scholar 

  • Krishnamoorthy, S., Rivas, J. A. and Amirdis, M. D., “Catalytic Oxidation of 1,2-Dichlorobenzene over Supported Transition Metal Oxides”,J. Catal.,193, 264 (2000).

    Article  CAS  Google Scholar 

  • Larachi, F., Iliuta, I. and Belkacemi, K., “Catalytic Wet Air Oxidation with a Deactivating Catalyst Analysis of Fixed and Sparged Three-Phase Reactors”,Catal. Today,64, 309 (2001).

    Article  CAS  Google Scholar 

  • Lee, G., Rho, S. and Jahng, D., “Design Considerations for Groundwater Remediation using Reduced Metals”,Korean J. Chem. Eng.,21, 621 (2004).

    Article  CAS  Google Scholar 

  • Pintar, A., “Catalytic Processes for the Purification of Drinking Water and Industrial Effluents”,Catal. Today,77, 451 (2003).

    Article  CAS  Google Scholar 

  • Pintar, A. and Levec, J., “Catalytic Oxidation of Organics in Aqueous Solutions: I. Kinetics of Phenol Oxidation”,J. Catal.,135, 345 (1992).

    Article  CAS  Google Scholar 

  • Sadana, A. and Katzer, J. R., “Involvement of Free Radicals in the Aqueous-Phase Catalytic Oxidation of Phenol over Copper Oxide”,J. Catal.,35, 140 (1974).

    Article  CAS  Google Scholar 

  • Sexton, B. A., Hughes, A. E. and Turney, T. W., “An XPS and TPR Study of the Reduction of Promoted Cobalt-Kieselguhr Fischer-Tropsch Catalysts”,J. Catal.,97, 390 (1986).

    Article  CAS  Google Scholar 

  • Sidebottom, H. and Franklin, J., “The Atmospheric Fate and Impact of Hydrochlorofluorocarbons and Chlorinated Solvents”,Pure Appl. Chem.,68, 1757 (1996).

    CAS  Google Scholar 

  • Silva, A. M. T., Marques, R. R. N. and Quinta-Ferreira, R. M., “Catalysts Based in Cerium Oxide for Wet Oxidation of Acrylic Acid in the Prevention of EnvironmentalRisks”,Appl. Catal. B,47, 269 (2004).

    Article  CAS  Google Scholar 

  • Thormahlen, P., Skoglundh, M., Fridell, E. and Andersson, B., “Low-Temperature CO Oxidation over Platinum and Cobalt Oxide Catalysts”,J. Catal.,188, 300 (1999).

    Article  CAS  Google Scholar 

  • Venezia, A. M., “X-ray Photoelectron Spectroscopy (XPS) for Catalysts Characterization”,Catal. Today,77, 359 (2003).

    Article  CAS  Google Scholar 

  • VoΒ, M., Borgmann, D. and Wedler, G., “Characterization of Alumina, Silica, and Titania Supported Cobalt Catalysts”,J. Catal.,212, 10 (2002).

    Article  Google Scholar 

  • Yankin, A., Vikhreva, O. and Balakirev, V., “P-T-x Diagram of the Co-Ti-O System”,J. Phys. Chem. Solids,60, 139 (1999).

    Article  CAS  Google Scholar 

  • Yao, Y. F. Y., “The Oxidation of Hydrocarbons and CO over Metal Oxides: III. Co3O4”,J. Catal.,33, 108 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Hyeon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.H. Surface chemical structures of CoO x /TiO2 catalysts for continuous wet trichloroethylene oxidation. Korean J. Chem. Eng. 22, 839–843 (2005). https://doi.org/10.1007/BF02705662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705662

Key words

Navigation