Skip to main content
Log in

Analysis of microstress in neutron irradiated polyester fibre by X-ray diffraction technique

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Microstresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium and hydrogen by nuclear transmutation. Another important aspect of neutron irradiation is that the fast neutron can produce dense ionization at deep levels in the materials. The polyethylene terephthalate (PET) fibre of raw denier value, 78.2, were irradiated by fast neutron of energy, 4.44 MeV, at different fluences ranging from 1×109 n/cm2 to 1 × 1012 n/cm2. In the present work, the radiation heating microstresses developed in PET micro-crystallites was investigated applying X’Pert-MPD Philips Analytical X-ray diffractometer and the effects of microstresses in tensile strength of fibre measured by Instron have also been reported. The shift of 0.45 cm−1 in the Raman peak position of 1614.65 cm{−1} to a higher value confirmed the development of microstresses due to neutron irradiation using micro-Raman technique. The defects due to irradiation were observed by SEM micrographs of single fibre for virgin and all irradiated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abou Taleb W M, Madi N K, Kassem M E and El-Khatib A M 1996Radiat. Phys. Chem. 47 709

    Article  CAS  Google Scholar 

  • Alexander L E 1969X-ray diffraction methods in polymer science (New York: Wiley Interscience)

    Google Scholar 

  • Alger R S 1965Radiation effects in polymers: Physics and chemistry of the organic solid state (eds) David Faxet al (New York: John Wiley and Sons Inc)Vol. III, p. 830

    Google Scholar 

  • Balasingh C and Singh V 1997Bull. Mater. Sci. 20 325

    CAS  Google Scholar 

  • Bhata N V and Naik S G 1984Text. Res. J. 54 868

    Article  Google Scholar 

  • Chang J-Hae, Kim S J, Joo Y L and Im S 2004Polymer 45 919

    Article  CAS  Google Scholar 

  • Clark G L (ed.) 1963The encyclopedia of X-ray and gamma ray (New York: Reinhold Publishing Corporation) p. 1027

    Google Scholar 

  • Crist A and Cohen J B 1979J. Polym. Sci. Polym. Phys. 17 1001

    Article  CAS  Google Scholar 

  • Cullity B D 1978Elements of X-ray diffraction (London: Addison Wesley Publishing Company Inc) p. 286

    Google Scholar 

  • Davenas J, Stevension I, Celette N, Cambon S, Gardette J L, Rivaton A and Vignoud L 2002Nucl. Instrum. & Meth. B191 653

    Article  Google Scholar 

  • Ferreira L M, Casimiro M H, Oliveira C, Cabeco Silva M E, Marques Abreu M J and Coelho A 2002Nucl. Instrum. & Meth. B191 675

    Article  Google Scholar 

  • Fu S, Wu P and Han Z 2002Compos. Sci. Technol. 62 3

    Article  CAS  Google Scholar 

  • Guzman A M, Carlson J D, Baras J E and Pronko P P 1985Nucl. Instrum. & Meth. B7–8 468

    Article  Google Scholar 

  • Hosemann R 1967J. Polym. Sci. C20 11

    Google Scholar 

  • Kakudo M and Kasai N 1972X-ray diffraction by polymers (New York: Elsevier Publishing Company) pp 184, 255 and 375

    Google Scholar 

  • Knoll G F 1989Radiation detection and measurement (New York: John Wiley and Sons) pp 20 and 57

    Google Scholar 

  • Kuleznev V N and Shershnev V A 1990The chemistry and physics of polymers (Translated by G Leib) (Moscow: MIR Publishers) p. 261

    Google Scholar 

  • Leo W R 1987Techniques for nuclear and particle physics experiments (New York: Springer-Verlag) p. 8

    Google Scholar 

  • Martinez-Pardo M E, Cardoso J, Vazquez H and Aguilar M 1998Nucl. Instrum. & Meth. B140 325

    Article  Google Scholar 

  • Mallick B, Patel T and Behera R C 2004Polym. J. Japan (communicated)

  • Metzger A 2003Pillar and restore medical Incorporated, St. Paul USA MN 55113

    Google Scholar 

  • Mishra R, Tripathy S P, Sinha D, Dwivedi K K, Ghosh S, Khathing D T, Muller M, Fink D and Chung W H 2000Nucl. Instrum. & Meth. B168 59

    Article  Google Scholar 

  • Patel T and Bal S 2001Polym. J. 33 121

    Article  CAS  Google Scholar 

  • Patel T and Mallick B 2000WW-EAP-Newsletter (http://ndeaa.jpl. nasa.gov/nasa-nde/, NASA, USA)2 4

    Google Scholar 

  • Phaneuf M D, Berceli S A, Bide M J, Quist W C and LoGerfo F W 1997Biomaterials 18 755

    Article  CAS  Google Scholar 

  • Philips Analytical X-ray Netherlands 1999Pro-Fit software

  • Srivastava A K and Virk H S 2000Radiat. Phys. Chem. 59 31

    Article  CAS  Google Scholar 

  • Young R J and Yeh W Y 1994Polymer 35 3844

    Article  CAS  Google Scholar 

  • Young R J, Bowden P B, Ritchie J M and Rider J G 1973J. Mater. Sci. 8 23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mallick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallick, B., Behera, R.C. & Patel, T. Analysis of microstress in neutron irradiated polyester fibre by X-ray diffraction technique. Bull Mater Sci 28, 593–598 (2005). https://doi.org/10.1007/BF02706348

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706348

Keywords

Navigation