Skip to main content
Log in

Solidification cracking in austenitic stainless steel welds

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arata Y, Matsuda F, Katayama S 1977 Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report II) -effect of ferrite, P, S, C, Si, and Mn on ductility properties of solidification brittleness.Trans. Jpn. Weld. Res. Inst. 6: 105–116

    Google Scholar 

  • Arata Y, Matsuda F, Saruwatari S 1974 Varestraint test for solidification crack susceptibility in weld metals of austenitic stainless steels.Trans. Jpn. Weld. Res. Inst. 3: 79–88

    Google Scholar 

  • Babu S S, Vitek J M, Iskander Y S, David S A 1997 New model for prediction of ferrite number of stainless steel welds.Sci. Technol. Welding Joining 2: 279–285

    Google Scholar 

  • Bhadeshia H K D H, David S A, Vitek J M 1991 Solidification sequences in stainless steel dissimilar alloy welds.Mater. Sci. Technol. 7: 50–61

    Google Scholar 

  • Blake P D 1979 Nitrogen in steel weld metals.Metal Constr. 9: 196–197

    Google Scholar 

  • Borland J C 1960 Generalized theory of super-solidus cracking in welds (and castings).Br. Weld, J. 7: 508–512

    Google Scholar 

  • Borland J C, Younger R N 1960 Some aspects of cracking in welded Cr-Ni austenitic steels.Br. Weld, J. 7: 22–59

    Google Scholar 

  • Brooks J A 1974 Effect of alloy modifications on HAZ cracking of A-286 stainless steel.Weld, J. 53: 517s-523s

    Google Scholar 

  • Brooks JA 1975 Weldability of high N, high-Mn austenitic stainless steel.Weld, J. 54: 189s-195s

    Google Scholar 

  • Brooks J A, Lambert Jr. F J 1978 The effects of phosphorus, sulfur and ferrite content on weld cracking of type 309 stainless steel.Weld, J. 57: 139s-143s

    Google Scholar 

  • Brooks J A, Thompson A W, Williams J C 1984 A fundamental study of the beneficial effects of δ-ferrite in reducing weld cracking.Weld, J. 63: 71s-83s

    Google Scholar 

  • Brooks J A, Thompson A W 1991 Micro structural development and solidification cracking susceptibility of austenitic stainless steel welds.Int. Mater. Rev. 36: 16–44

    Google Scholar 

  • Cieslak M J, Ritter A M, Savage W F 1982 Solidification cracking and analytical electron microscopy of austenitic stainless steel weld metals.Weld, J. 61: 1s-8s

    Google Scholar 

  • Clyne T W, Davies G J 1981 The influence of composition on solidification cracking susceptibility in binary alloy systems.Bri. Foundryman 74: 65–73

    Google Scholar 

  • David S A, Goodwin G M, Braski D N 1979 Solidification behaviour of austenitic stainless steel filler metals.Weld, J. 58: 330s-336s

    Google Scholar 

  • Dixon B 1988 Weld metal solidification cracking in austenitic stainless steels.Aust. Weld, J. 16: 2–10

    Google Scholar 

  • Eckenrod J J, Kovach C W 1979Effect of nitrogen on the sensitization, corrosion and mechanical properties of 18Cr-8Ni stainless steels (eds) C R Brinkman, H W Garvin,ASTMSTP 679, pp 17–41

  • Egnell L, May W M 1970 Welding trials on a titanium-bearing austenitic steel.Welding Inst. Conf. on welding of creep-resistant steels, pp 144–151

  • Folkhard E 1988Welding metallurgy of stainless steels (New York: Springer Verlag)

    Google Scholar 

  • Fredriksson H 1979 Transition from peritectic to eutectic reaction in iron-base alloys.Solidification and casting of metals (London: The Metals Society) pp 131–138

    Google Scholar 

  • Goodwin G M 1987 Development of a new hot-cracking test -the sigmajig.Weld, J. 66: 33s-38s

    Google Scholar 

  • Goodwin G M 1988 The effects of heat input and weld process on hot cracking in stainless steel.Weld, J. 67: 88s-94s

    Google Scholar 

  • Goodwin G M 1990 Test methods for evaluating hot cracking: review and perspective.Advances in welding metallurgy (Miami, FL: Am. Welding Soc./Jap. Welding Soc./Japn. Welding Eng. Soc.) pp 37–49

    Google Scholar 

  • Hammar O, Svensson U 1979 Influence of steel composition on segregation and microstructure during solidification of austenitic stainless steels.Solidification and casting of metals (London: The Metals Society) pp 401–410

    Google Scholar 

  • Hemsworth B, Boniszewski T, Eaton N F 1969 Classification and definition of high temperature welding cracks in alloys.Met. Constr. Br. Weld, J. 2: 5–16

    Google Scholar 

  • Hoerl A, Moore T J 1957 The welding of type 347 steels.Weld. J. 46: 442s-48s

    Google Scholar 

  • Hull F C 1960 Effects of alloying additions on hot cracking of austenitic stainless steels.Proc. ASTM 60: 667–690

    Google Scholar 

  • Hull F C 1967 The effect of δ-ferrite on the hot cracking of stainless steel.Weld, J. 46: 399s-409s

    Google Scholar 

  • Jolley G, Geraghty J E 1979 Solidification cracking in 18Cr-13Ni-1Nb stainless steel weld metal: the role of magnesium additions.Solidification and casting of metals (London: The Metals Society) pp 411–415

    Google Scholar 

  • Kakhovskii N Iet al 1971 Effects of silicon, nitrogen and manganese on chemical heterogeneity in type 0Kh23N28M3D3T weld metals and their resistance to hot cracking.Avtomatich. Svarka 8: 11–14

    Google Scholar 

  • Kelly T F, Cohen M, Vandersande J B 1984 Rapid solidification of a droplet-processed stainless steel.Met. Trans. A15: 819–833

    Google Scholar 

  • Koseki T, Flemings M C 1996 Solidification of undercooled Fe-Cr-Ni alloys part II -microstructural evolution.Metall. Mater. Trans. A27: 3226–3240

    Article  Google Scholar 

  • Koseki T, Matsumiya T, Yamada W, Ogawa T 1994 Numerical modeling of solidification and subsequent transformation of Fe-Cr-Ni alloys.Metall. Mater. Trans. A25: 1309–1321

    Article  Google Scholar 

  • Kotecki D J, Siewert T A 1992 WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram.Weld, J. 71: 171s-178s

    Google Scholar 

  • Kujanpaa V, Suutala N, Takalo T, Moisio T 1979 Correlation between solidification cracking and microstructure in austenitic-ferritic stainless steel welds.Weld, Res. Int. 9: 55–76

    Google Scholar 

  • Kujanpaa V P 1985 Effects of steel type and impurities in solidification cracking of austenenitic stainless steel welds.Met. Constr. 117: 40R-46R

    Google Scholar 

  • Kurz W, Fischer D J 1985Fundamentals of solidification (New York: Trans. Tech.)

    Google Scholar 

  • Li L, Messler R W 1999 The effects of phosphorus and sulfur on susceptibility to weld hot cracking in austenitic stainless steels.Weld, J. 88: 387s-396s

    Google Scholar 

  • Lin W, Nelson T, Lippold J C 1992 InProc. ’Eighth Annual North American Welding Research Conference ’ (Columbus, OH: Am. Welding Soc./Edison Welding Inst./TWI) pp 1–6

    Google Scholar 

  • Lingenfelter A C 1972 Varestraint testing of nickel alloys.Weld, J. 51: 430s-36s.

    Google Scholar 

  • Lundin C D, DeLong W T, Spond D F 1975 Ferrite-fissuring relationships in austenitic stainless steel weld metals.Weld, J. 54: 241s-246s

    Google Scholar 

  • Lundin C D, Chou C-P D, Sullivan D J 1980 Hot cracking resistance of austenitic stainless steel weld metals.Weld, J. 59: 226s-232s

    Google Scholar 

  • Lundin C D, Lingenfelter A C, Grotke G E, Lessman G G, Matthews S J 1982 The varestraint test.Weld, Res. Bull. (280): 1–19

  • Lundin C D, Chou C-P D 1983 Hot cracking of austenitic stainless steels weld metals.WRC Bull. No. 289

  • Lundin C D, Menon R, Lee C H, Osorio V 1986 New concepts in varestraint testing for hot cracking. InWelding Research: The State of the Art, JDC University Research Symposium Proceedings, ASM, pp 33–42

  • Lundin C D, Lee C H, Menon R, Osorio V 1988a Weldability evaluations of modified 316 and 347 austenitic stainless steels: Part I -preliminary results.Weld, J. 67: 35s-46s

    Google Scholar 

  • Lundin C D, Lee C H, Menon R 1988b Hot ductility and weldability of free machining austenitic stainless steel.Weld, J. 67: 119s-130s

    Google Scholar 

  • Lundin C D, Lee C H, Qiao C Y P 1988cGroup sponsored study -weldability and hot ductility behaviour of nuclear grade austenitic stainless steels. Final Report, Univ. of Tennessee, Knoxville, TN

    Google Scholar 

  • Massalski T B 1996Alloy phase diagrams (Metals Park, OH: ASM)

    Google Scholar 

  • Masumoto I, Takami K, Kutsuna M 1972 Hot cracking of austenitic stainless steel weld metal.J. Jpn. Welding Soc. 41: 1306–1314

    Google Scholar 

  • Matsuda F 1990 Hot crack susceptibility of weld metal. InAdvances in welding metallurgy (Miami, FL: Am. Welding Soc./Jap. Welding Soc./Japn. Welding Eng. Soc.) pp 19–35

    Google Scholar 

  • Matsuda F, Nakagawa H, Nakara K, Sasaki I 1976Trans. Jpn. Weld. Res. Inst. 5: 53–67

    Google Scholar 

  • Matsuda F, Nakagawa H, Uehara T, Katayama S, Arata Y 1979 A new explanation for role of δ-ferrite improving weld solidification crack susceptibility in austenitic stainless steel.Trans. Jpn. Weld. Res. Inst. 8:105–112

    Google Scholar 

  • Matsuda F, Katayama S, Arata Y 1981 Solidification crack susceptibility in weld metals of fully austenitic stainless steels -solidification crack susceptibility and amount of phosphide and sulphide in SUS 310 weld metal.Trans. Jpn. Weld, Res. Inst. 10: 201–212

    Google Scholar 

  • Matsuda F, Nakagawa H, Katayama S, Arata Y 1982a Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report VI) -effect of La or REM addition on solidification crack resistance.Trans. Jpn. Weld, Res. Inst. 11: 79–94

    Google Scholar 

  • Matsuda F, Nakagawa H, Sorada K 1982b Dynamic observation of solidification and solidification cracking during welding with optical microscope.Trans. Jpn. Weld, Res. Inst. 11: 67–77

    Google Scholar 

  • Matsuda F, Nakagawa H, Katayama S, Arata Y 1983a Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report VIII) -effect of nitrogen on cracking in SUS 304 weld metal.Trans. Jpn. Weld, Res. Inst. 12: 89–95

    Google Scholar 

  • Matsuda F, Katayama S, Arata Y 1983b Solidification crack susceptibility in weld metals of fully austenitic stainless steels (report IX) -effect of titanium on solidification crack resistance.Trans. Jpn. Weld, Res. Inst. 12: 87–92

    Google Scholar 

  • Matsuda F, Nakagawa H, Kato I, Murata Y 1986Trans. Jpn. Weld, Res. Inst. 15: 99–112

    Google Scholar 

  • Matsuda F, Nakagawa H, Lee J B 1989a Weld cracking in duplex stainless steel (Report II) -modelling of cellular dendritic growth during weld solidification.Trans. Jpn. Weld, Res. Inst. 18: 107–117

    Google Scholar 

  • MatsudaF, Nakagawa H, Lee J B 1989b Weld cracking in duplex stainless steel (Report III) -numerical analysis of solidification BTR in stainless steel.Trans. Jpn. Weld, Res. Inst. 18: 119–126

    Google Scholar 

  • Maziasz P J 1989 Developing an austenitic stainless steel for improved performance in advanced fossil power facilities.J. Met. 12: 14–20

    Google Scholar 

  • Medovar I1954 On the nature of weld hot cracking.Avtomatich. Svarka 7: 12–28

    Google Scholar 

  • Menon R, Kotecki D J 1989 Literature review -nitrogen in stainless steel weld metal.WRC Bull. No. 389, pp 142–161

  • Mills K C, Keene B J 1990Int. Mater. Rev. 35: 185–216

    Google Scholar 

  • Miura M 1981 Weldability of austenitic stainless steel tubes.J. Sumitomo Met. 34: 201–213

    Google Scholar 

  • Mudali U K, Dayal R K, Gill T P S, Gnanamoorthy J B 1986 Influence of nitrogen addition on microstructure and pitting corrosion resistance of austenitic weld metals.Werkstoffe Korros. 37: 637–643

    Google Scholar 

  • Ogawa T, Tsunetomi E 1982 Hot cracking susceptibility of austenitic stainless steels.Weld, J. 61: 82s-93s

    Google Scholar 

  • Ogawa T, Suzuki K, Zaizen T 1984 The weldability of nitrogen-containing austenitic stainless steel: part II-porosity, cracking and creep properties.Weld, J. 63: 213s-223s

    Google Scholar 

  • Olson D L 1985 Prediction of austenitic weld metal microstructure and properties.Weld, J. 64: 281s-295s

    Google Scholar 

  • Omsen A, Eliasson L 1971 Distribution of nitrogen during solidification of a 17-5Cr-13Ni-2-8Mo stainless steel.J. Iron Steel Inst. 10: 830–833

    Google Scholar 

  • Pehlke R D, Elliott J F 1960Trans. AIME 218: 1088–1101

    Google Scholar 

  • Pellini W S 1952 Strain theory of hot tearing.Foundry November 1952, p 125

  • Pepe J J, Savage W F 1967 Effects of constitutional liquation on 18-Ni maraging steel weldments.Weld, J. 46:411s-422s

    Google Scholar 

  • Persson N G 1971 The influence of sulphur on the structure and weldability of a titanium-bearing austenitic stainless steel.Proc. of the Soviet-Swedish Symposium. Clean Steel, Sandviken, Sweden I: 142–151

    Google Scholar 

  • Prokhorov N N, Prokhorov N Nikol 1971 Fundamentals of the theory for technological strength of metals while crystallizing during welding.Trans Jap. Welding Soc. 2: 109–117

    Google Scholar 

  • Rabensteiner G, Tosch J, Schaberiter H 1983 Hot cracking problems in different fully austenitic weld metals.Weld. J. 62: 21s-27s

    Google Scholar 

  • Savage W F, Lundin C D 1965 Application of the varestraint technique to the study of weldability.Weld. J. 45: 497s-503s

    Google Scholar 

  • Schaeffler A L 1949 Constitution diagram for stainless steel weld metal.Met. Progr. 56: 680–680B

    Google Scholar 

  • Scherer R, Riedrich G, Hougardy H 1941 US Patent 2 240 672

  • Semenyuk N I, Rabkin D M, Korshun A O 1986 Determining the hot cracking temperature range in the welding of aluminium alloys.Autom. Weld, 39: 16–18

    Google Scholar 

  • Shankar V 2000Role of compositional factors in hot cracking of austenitic stainless steel weldments. PhD thesis, Indian Institute of Technology -Madras, Chennai

    Google Scholar 

  • Shankar V, Gill T P S, Terrance A L E, Mannan S L, Sundaresan S 2000a Relation between microstructure, composition and hot cracking in Ti-stabilised austenitic stainless steel weldments.Metall. Mater. Trans. A31: 3109–3122

    Article  Google Scholar 

  • Shankar V, Gill T P S, Mannan S L, Sundaresan S 2000b Criteria for hot cracking evaluation in austenitic stainless steel welds using the longitudinal varestraint and transvarestraint tests.Sci. Technol. Weld. Join. 5: 91–97

    Article  Google Scholar 

  • Siewert T A, McCowan C N, Olson D L 1988 Ferrite number prediction to 100 FN in stainless steel weld metal.Weld, J. 37: 289s-298s

    Google Scholar 

  • Smith C S 1948 Grains, phases and interfaces: an interpretation of microstructure.Trans. Am. Inst. Mining Metall. Eng. 175: 15–51

    Google Scholar 

  • Stevens S M 1989 Forms of nitrogen in weld metal.WRC Bull. (369): pp 1–2

    Google Scholar 

  • Suutala N, Moisio T 1979Solidification technology in the foundry and the casthouse (London: The Metals Society)

    Google Scholar 

  • Suutala N 1982 Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds.Met. Trans. A13: 2121–2130

    Google Scholar 

  • Suutala N 1983 Effect of solidification conditions on the solidification mode in austenitic stainless steels.Met. Trans. A14: 191–197

    Google Scholar 

  • Thier H, Killing R, Killing U 1987 Solidification modes of weldments in corrosion resistant steels -how to make them visible.Met. Constr. 19: 127–130

    Google Scholar 

  • Vitek J M, Iskander Y S, Oblow E M 2000 Improved ferrite number prediction in stainless steel arc welds using artificial neural networks -Parts I and II.Weld, J. 79: 33-s-40-s, 41-s–50-s

    Google Scholar 

  • Won Y M, Yeo T-J, Seol D J, Oh K H 2000 A new criterion for internal crack formation in continuously cast steels.Met. Mater. Trans. B31: 779–794

    Article  Google Scholar 

  • Wolstenholme D A 1973 Weld crater cracking in Incoloy 800.Weld, Met. Fabrication 41: 433–438

    Google Scholar 

  • Zhitnikov N P 1981 The hot cracking resistance of austenitic CrNi weld metal and weld zone in relation to nitrogen content.Weld, Prod, 3: 14–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, V., Gill, T.P.S., Mannan, S.L. et al. Solidification cracking in austenitic stainless steel welds. Sadhana 28, 359–382 (2003). https://doi.org/10.1007/BF02706438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706438

Keywords

Navigation