Skip to main content
Log in

Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Single-domain barium ferrite nano particles have been synthesized with narrow particle-size distribution using an auto combustion technique. In this process, citric acid was used as a fuel. Ratios of cation to fuel were maintained variously at 1:1, 1:2 and 1:3. The pH was 7 in all cases. Of all three cases, a cation to citric acid ratio of 1:2 gives better yield in the formation of crystalline and single domain particles with a narrow range of size distribution. Most particles are in the range of 80 to 100 nm. Maximum magnetization and coercivity values are also greater for 1:2 ratios. These values measured at room temperature are found to be 55 emu/gram and 5000 Oe respectively. XPS and ESR studies support the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujiwara T, Isshiki M, Suzuki T, Ito T and Ido T 1985IEEE Trans. Magn. 21 1480

    Article  Google Scholar 

  2. Candac T S, Carpenter E E, O’Connor C J, John V T and Li S 1998IEEE Trans. Magn. 34 1111

    Article  Google Scholar 

  3. Pillai V, Kumar P, Hou M J, Ayyub P and Shah D O 1995Adv. Coll. Int. Sci. 55 241

    Article  CAS  Google Scholar 

  4. Wiley B, Sun Y, Chen J, Hu Cang, Li Z Y, Li X and Xia Y 2005MRS Bull. 30 356

    CAS  Google Scholar 

  5. Pileni M P, Ninham B W, Kryzwicki T G, Lisiecki J T I and Filankembo A 1999Adv. Mater. 11 1358

    Article  CAS  Google Scholar 

  6. Murphy C J and Jana N R 2002Adv. Mater. 14 80

    Article  CAS  Google Scholar 

  7. Patil K C, Aruna S T and Mimani T 2002Curr. Op. Solid State Mater. Sci. 6 507

    Article  CAS  Google Scholar 

  8. Choi H J, Lee K M and Lee J G 2001J. Power Sources 103 154

    Article  CAS  Google Scholar 

  9. Shikao S and Jiye W 2001J. Alloys and Compounds 327 82

    Article  Google Scholar 

  10. Julien C, Lopez MAC, Mohan T, Chitra S, Kalyani P and Gopukumar S 2000Solid State Ionics 135 241

    Article  CAS  Google Scholar 

  11. Castro S, Gayoso M, Rivas J, Greneche J M, Mira J and Rodriguez C 1996J. Magn. Magn. Mater. 152 61

    Article  Google Scholar 

  12. Aruna S T and Patil K C 1998Nano Structr. Mater. 10 955

    Article  CAS  Google Scholar 

  13. Chick L A, Pederson L R, Maupin G D, Bates J L, Thomas L E and Exarhos G J 1990Mater. Lett. 10 6

    Article  CAS  Google Scholar 

  14. Yu H F and Huang K C 2003J. Magn. Magn. Mater. 260 455

    Article  CAS  Google Scholar 

  15. Purohit R D, Tyagi A K, Mathews M D and Saha S 2000J. Nucl. Mater. 280 51

    Article  CAS  Google Scholar 

  16. Fraigi L B, Lamas D G and Walsoe de Reca N E 2001Mater. Lett. 47 262

    Article  CAS  Google Scholar 

  17. Janasi S R, Emura M, Landgraf F J G and Rodrigues D 2002J. Magn. Mater. 238 168

    Article  CAS  Google Scholar 

  18. Carp O, Barjega R, Segal E and Brezeanu M 1998Acta Mater. 318 57

    CAS  Google Scholar 

  19. Affleck L, Auguas M D and Parkin I P 2000J. Mater. Chem. 10 1925

    Article  CAS  Google Scholar 

  20. Huang J, Zhuang H and Li W 2003Mater. Res. Bull. 38 149

    Article  CAS  Google Scholar 

  21. Wagner C D, Riggs W M, Davis C E and Moulder J F 1978Handbook of X-ray photoelectron spectroscopy (ed.) G E Muilenberg (Perkin Elmer Corp)

  22. Bera S, Prince A A M, Velmurugan S, Ranganathan P S, Gopalan R, Paneerselvam G and Narasimhan S V 2001J. Mater. Sci. 36 5379

    Article  CAS  Google Scholar 

  23. Allen G C and Hallam K R 1996Appl. Surf. Sci. 93 25

    Article  Google Scholar 

  24. Allen G C, Harris S J, Jutson J A and Dyke J M 1989Appl. Surf. Sci. 37 111

    Article  CAS  Google Scholar 

  25. Yu H F and Huang K C 2003J. Magn. Magn. Mater. 260 455

    Article  CAS  Google Scholar 

  26. An S Y, Lee S W, Lee S W and Kim C S 2002J. Magn. Magn. Mater. 242 413

    Article  Google Scholar 

  27. Benito G, Morales M P, Requena J, Raposa V, Vazquez M and Moya J S 2001J. Magn. Magn. Mater. 234 65

    Article  CAS  Google Scholar 

  28. Smit J and Wijn H P J 1959Ferrites (New York: John Wiley)

    Google Scholar 

  29. Misra S K, Rane M V, Srivastava C M and Bahadur D 1998J. Magn. Magn. Mater. 187 93

    Article  CAS  Google Scholar 

  30. Shirk B T and Buessem W R 1970J. Am. Ceram. Soc. 53 192

    Article  CAS  Google Scholar 

  31. Bahadur D, Kollali S, Rao CNR, Patni M J and Srivastava C M 1979J. Phys. Chem. Solids 40 981

    Article  CAS  Google Scholar 

  32. Griseom D L 1980J. Non-Cryst. Solids 42 287

    Article  Google Scholar 

  33. Sparks M 1965J. Appl. Phys. 36 1570

    Article  CAS  Google Scholar 

  34. Srivastava C M and Patni M J 1974J. Magn. Res. 5 359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bahadur.

Additional information

Dedicated to Prof J Gopalakrishnan on his 62nd birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahadur, D., Rajakumar, S. & Kumar, A. Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles. J Chem Sci 118, 15–21 (2006). https://doi.org/10.1007/BF02708761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708761

Keywords

Navigation