Skip to main content
Log in

Diffusion soldering for stable high-temperature thin-film bonds

  • Overview
  • Phase Diagrams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Diffusion soldering is a special bonding technique to produce joints at a moderate temperature that are subsequently stable at higher temperatures. The search for material systems extending the upper-temperature limit of stability requires information from the pertinent phase diagrams and the reaction kinetics. Combining experimental studies on phase equilibration in powder samples with bulk and thin-film diffusion couples is a useful approach for a systematic search. Promising candidates for dsoldering are Pt-In or Pd-In, and molybdenum is also an effective diffusion barrier against the attack of liquid tin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. MacDonald and T.W. Eagar,Ann. Rev. Mater. Sci., 22 (1992), pp. 23–46.

    Article  CAS  Google Scholar 

  2. G. Humpston and D.M. Jacobsen,Principles of Soldering and Brazing (Materials Park, OH: ASM, 1993), pp. 128–132.

    Google Scholar 

  3. R. Schmid-Fetzer,Design Fundamentals of High-Temperature Composites, Intermetallics and Metal-Ceramic Systems, ed. R.Y. Lin et al. (Warrendale, PA: TMS, 1995), pp. 75–97.

    Google Scholar 

  4. M.L. Shalz et al.,Cer. Trans. Amer. Cer. Soc., 35 (1993), pp. 301–322.

    CAS  Google Scholar 

  5. S.D. Peteves et al.,Acta mater., 46 (1998), pp. 2407–2414.

    Article  CAS  Google Scholar 

  6. W.F. Gale, Y. Guan, and S.V. Orel,J. Mater. Prod. Technol., 13 (1998), pp. 1–12.

    CAS  Google Scholar 

  7. W. Xiaowei,J. Mater. Sci., 36 (2001), pp. 1539–1546.

    Article  Google Scholar 

  8. H. Hieber, German patent DE 3,740,773 (A1/Erledigt 1991 [1989]).

  9. G. Humpston et al.,GEC Rev., 7 (2) (1991), pp. 67–78.

    Google Scholar 

  10. F. Bartels, T. Muschik, and W. Gust,Verbindungstechnik in der Elektronik (Düsseldorf, Germany: DVS-Berichte, 1992), pp. 22–24.

    Google Scholar 

  11. C.C. Lee, C.Y. Wang, and G. Matijasevic,Trans. Comp., Hyb., Manufact. Technol., 16 (1993), pp. 311–316.

    Article  CAS  Google Scholar 

  12. C. Bocking et al.,GEC J. Technol., 14 (1997), pp. 110–114.

    Google Scholar 

  13. P.K. Khanna, G. Dalke, and W. Gust,Z. Metallkd., 90 (9) (1999), pp. 722–726.

    CAS  Google Scholar 

  14. Ch. Kuper et al.,Z. Metallkd., 89 (1998), pp. 855–862.

    CAS  Google Scholar 

  15. T.B. Massalski et al. (eds.),Binary Alloy Phase Diagrams (Materials Park, OH: ASM, 1990).

    Google Scholar 

  16. C. Toffolon, C. Servant, and B. Sundman,J. Phase Equil., 19 (1998), pp. 479–485.

    Article  CAS  Google Scholar 

  17. U. HÄusermann et al.,Chem. Eur. J., 4 (1998), pp. 1007–1015.

    Article  Google Scholar 

  18. T. Studnitzky and R. Schmid-Fetzer,Z. Metallkd., 93 (2002), pp. 894–903.

    Google Scholar 

  19. T. Studnitzky and R. Schmid-Fetzer, submitted toJ. Electron. Mater. (2002)

  20. W.S. Wong et al.,J. Electron. Mater., 28 (1999), pp. 1409–1413.

    Article  CAS  Google Scholar 

  21. W.S. Wong et al.,Appl. Phys. Lett., 77 (2000), pp. 2822–2824.

    Article  CAS  Google Scholar 

  22. W.S. Wong et al.,Mater. Res. Soc. Symp. Proc. 681 E (Warrendale, PA: MRS, 2001), pp. I6.1.1-I6.1.9.

    Google Scholar 

  23. N. Quitoriano et al.,J. Electron. Mater., 30 (2001), pp. 1471–1475.

    Article  CAS  Google Scholar 

  24. ICDD Powder Diffraction File (Newtown Square, PA: International Center for Diffraction Data, 1998).

  25. W. Kraus and G. Nolze,J. Appl. Crystals, 29 (1996), pp. 301–303.

    Article  CAS  Google Scholar 

  26. W. Kraus and G. Nolze,PowderCell for Windows Version 2.3 (Berlin: Federal Institute for Materials Research and Testing, 1999).

    Google Scholar 

  27. P. Villars and L.D. Calvert,Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (Material Park, OH, ASM, 1991).

    Google Scholar 

  28. T. Studnitzky and R. Schmid-Fetzer,Z. Metallkd. 93 (2002), 885–893.

    CAS  Google Scholar 

  29. T. Studnitzky, B. Onderka, and R. Schmid-Fetzer,Z. Metallkd., 93 (2002), pp. 48–57.

    CAS  Google Scholar 

  30. J.G. Lee et al.,Soldering and Surface Mount Technol., 14 (2002), pp. 11–17

    Article  Google Scholar 

  31. K.C. Jain and S. Bhan,Trans. Indian Inst. Met., 25 (1972), pp. 100–102.

    CAS  Google Scholar 

  32. P. Guex and P. Feschotte,J. Less Common Metals, 46 (1976), pp. 101–116.

    Article  CAS  Google Scholar 

  33. J. Jandova and D. Jakes,Kovove Mater., 26 (1) (1998), p. 38.

    Google Scholar 

  34. C.F. Lin, S.E. Mohney, and Y.A. Chang,J. Appl. Phys., 74 (7) (1993), p. 4398.

    Article  CAS  Google Scholar 

  35. D. Swenson and Y.A. Chang,Mater. Sci. Eng. B, 22 (1994), p. 267.

    Article  Google Scholar 

  36. L.H. Allen et al.,Appl. Phys. Lett., 51 (1987), pp. 326–327.

    Article  CAS  Google Scholar 

  37. G. Stremsdoerfer et al.,J. Electrochem. Soc., 137 (1990), pp. 256–259.

    Article  CAS  Google Scholar 

  38. H.G. Fu and T.S. Huang,Solid-State Electron., 38 (1995), pp. 89–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studnitzky, T., Schmid-Fetzer, R. Diffusion soldering for stable high-temperature thin-film bonds. JOM 54, 58–63 (2002). https://doi.org/10.1007/BF02709191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02709191

Keywords

Navigation