Skip to main content
Log in

Probable causes for cyanobacterial expansion in the Baltic Sea: Role of anoxia and phosphorus retention

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

This study corroborates the hypothesis that nitrogen-fixing cyanobacteria have probably occurred as an important component of the phytoplankton community in the Baltic Sea at least since brackish water conditions were initiated 8,50014C yr BP. Pigment analyses indicate that extensive occurrences started prior to a sharp increase in nutrient levels dated to 7,10014C yr BP. The cyanobacteria could have functioned as a natural trigger for eutrophication in the Baltic Sea by importing nitrogen. This is also verified by a contemporaneous drop in the δ15N values from 4‰ to around 2‰. We further conclude that the spreading of cyanobacteria was probably caused by a decrease in nitrogen∶phosphorus (N∶P) in the water mass that resulted from the intrusion of oceanic water with high P levels. The fractionation of P in sediments indicated that iron-bound P was efficiently sequestered under anoxic conditions that occurred as a consequence of the establishment of a stable stratification caused by the marine intrusion. This pool only showed minor variations around 3 μmol g−1 at the freshwater-brackish water transition. All P pools except the CaCO3 fraction showed a distinct increase around 9,30014C yr BP prior to the transition. We interpreted this increase as a change in preservation of organic matter or in the source of the sediment. Slightly after 4,00014C yr BP there was a dramatic drop in all P pools without any corresponding decreases in total N and carbon. Total P decreased from around 75 to 25–30 μmol g−1. The most dramatic drop occurred in the organic bound and the detrital apatite fractions, which decreased by a factor of 3–4. We explain this as a preferential regeneration of P, especially organic P, compared to other nutrients due to more prevalent anoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Andrén, T. and E. Andrén. 1999. Large-scale climatic influence on the Holocene history of the Baltic proper. Ph.D. Dissertation, Meddelanden från Stockholms Universitets Institution för Geologi och Geokemi, 302. Paper V.

  • Andren, E., G. Schimmield, andT. Brand. 1999. Environmental changes of the last three centuries indicated by siliceous microfossil records from the southwestern Baltic Sea.The Holocene 9:25–38.

    Article  Google Scholar 

  • Battarbee, R. W. 1986. Diatom analysis, p. 527–570.In B. E. Berglund (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Berglund, B. 1971. Littorina transgressions in Blekinge, south Sweden. A preliminary report.Geologiska Föreningen i Stockholm Förhandlingar 93:625–652.

    Google Scholar 

  • Berglund, B. andP. Sandgren. 1996. The early Littorina Sea environment in Blekinge—Chronology, transgressions, salinity, and shore vegetation.Geologiska Föreningen i Stockholm Förhandlingar 118:A64-A65.

    Google Scholar 

  • Bianchi, T. S., J. E. Dibb, andS. Findlay. 1993. Early diagenesis of plant pigment in Hudson River sediments.Estuarine, Coastal and Shelf Science 36:517–527.

    Article  CAS  Google Scholar 

  • Bianchi, T. S., A. Demetropoulos, M. Hadjichristophorou, M. Argyrou, M. Baskaran, andC. Lambert. 1996. Plant pigments as biomarkers of organic matter sources in sediments and coastal waters of Cyprus (eastern Mediterranean).Estuarine, Coastal and Shelf Science 42:103–115.

    Article  CAS  Google Scholar 

  • Bianchi, T. S., P. Westman, C. Rolff, E. Engelhaupt, T. Andrén, andR. Elmgren. 2000. Cyanobacterial blooms in the Baltic Sea: Natural or human induced?Limnology and Oceanography 45:716–726.

    CAS  Google Scholar 

  • Björck, S. 1995. A review of the history of the Baltic Sea, 13.0-8.0 ka BP.Quaternary International 27:19–40.

    Article  Google Scholar 

  • Carman, R., J. Aigars, andB. Larsen. 1996. Carbon and nutrient geochemistry of the surface sediments of the Gulf of Riga, Baltic Sea.Marine Geology 134:57–76.

    Article  CAS  Google Scholar 

  • Carman, R. andP. Jonsson. 1991. Distribution patterns of different forms of phosphorous in some surficial sediments of the Baltic Sea.Chemical Geology 90:91–106.

    Article  CAS  Google Scholar 

  • Carman, R. andL. Rahm. 1997. Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper.Journal of Sea Research 37:25–47.

    Article  CAS  Google Scholar 

  • Christensen, C. 1996. The Littorina transgressions in Denmark, p. 15–22.In A. Fischer (ed.), Man and Sea in the Mesolithics, Coastal Settlements Above and Below Present Sea Level. Oxbow Monographs 53. Oxbow Books, Oxford, U.K.

    Google Scholar 

  • Ekman, S. 1953. Zoogeography of the Sea. Sidgwick and Jackson, London, U.K.

    Google Scholar 

  • Emelyanov, E. M., C. Christiansen, G. I. Kleymenova, E. S. Trimonis, andE. M. Vishnevskaya. 1995. Stratigraphy and composition of the Holocene sediments in the Bornholm Basin.Aarhus Geoscience 5:43–53.

    Google Scholar 

  • Erlenkuser, H., E. Suess, andH. Willkomm. 1974. Industrialization affects on heavy metal and carbon isotope concentration in recent Baltic Sea sediments.Geochimica et Cosmochimica Acta 38:823–842.

    Article  Google Scholar 

  • Eronen, M. 1988. A scrutiny of the late Quaternary history of the Baltic Sea, p. 11–18.In B. Winterhalter (ed.), The Baltic Sea. Geological Survey of Finland Special Paper 6. Espoo, Finland.

  • Filippelli, G. M. 2001. Carbon and phosphorus cycling in anoxic sediments of the Saanich Inlet, British Columbia.Marine Geology 174:307–321.

    Article  CAS  Google Scholar 

  • Florin, M.-B. 1944. Havsstrandens förskjutning och bebyggelseutveckling i östra Mellansverige under senkvartär tid.Geologiska Föreningens i Stockholm Förhandlingar 68:429–458.

    Google Scholar 

  • Gunnars, A. andS. Blomqvist. 1997. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions—An experimental comparison of freshwater and brackish marine systems.Biogeochemistry 37:203–226.

    Article  CAS  Google Scholar 

  • Gustafsson, B. and P. Westman. In press. On the causes for salinity variations in the Baltic Sea during the last 8500 yearsPaleoceanography.

  • Hamilton-Galat, K. andD. L. Galat. 1983. Seasonal variation of nutrient, organic carbon, ATP and microbial standing crops in a vertical profile of Pyramid Lake, Nevada.Hydrobiologia 105:27–43.

    Article  CAS  Google Scholar 

  • Hyvärinen, H. 1988. Definitions of the Baltic Stage, p. 7–11.In J. Donner and A. Raukas (eds.), Problems of the Baltic Sea History.Annales Academice Scientiarum Fennice 148:25–35.

  • Ingall, E. D. andR. Janke. 1994. Evidence for enhanced phosphorus regeneration from sediments overlain by oxygen depleted waters.Geochimica et Cosmochimica Acta 54:2617–2620.

    Article  Google Scholar 

  • Jonsson, P., R. Carman, andF. Wulff. 1990. Laminated sediments in the Baltic—A tool for evaluating nutrient mass balances.Ambio 19:152–158.

    Google Scholar 

  • Kahru, M. 1997. Using satellites to monitor large-scale environmental change: A case study of cyanobacterial blooms in the Baltic Sea, p. 43–61.In M. Kahru and C. V. Brown (eds.), Monitoring Algal Blooms: New Techniques for Detecting Large-Scale Environmental Change. Landes Bioscience, Georgetown, Texas.

    Google Scholar 

  • Königsson, L.-K. S. andG. Posnert. 1988. Ancylus faunas studied by accelerator “SUP 14” C dating of single small shells, p. 137–145.In B. Winterhalter (ed.), The Baltic, Special Paper 6. Geological Survey of Finland, Espoo, Finland.

    Google Scholar 

  • Kononen, K. 1992. Dynamics of the toxic cyanobacterial blooms in the Baltic Sea.Finnish Marine Research 261:3–36.

    Google Scholar 

  • Konopka, A. andT. D. Broch. 1978. Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota.Applied and Environmental Microbiology 36:572–576.

    CAS  Google Scholar 

  • Lampert, W. 1981. Toxicity of the bluegreenMicrocystis aeruginosa: Effective defense mechanism onDaphnia.Verhandlungen Internationale der Vereinigung Theoretische und Angewande Limnologie 21:1436–1440.

    Google Scholar 

  • Larsson, U., S. Hajdu, J. Walve, andR. Elmgren. 2000. Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen.Limnology and Oceanography 46:811–820.

    Article  Google Scholar 

  • Leavitt, P. R. 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance.Journal of Paleolimnology 9:109–127.

    Article  Google Scholar 

  • Lehtimäki, J., P. Moisander, K. Sivonen, andK. Kononen. 1997. Growth, nitrogen fixation and nodularin production by two Baltic Sea cyanobacteria.Applied and Environmental Microbiology 63:1647–1656.

    Google Scholar 

  • Lotocka, M. 1998. Carotenoid pigments in Baltic Sea sediments.Oceanologia 40:27–38.

    Google Scholar 

  • Matsuno, T. andS. Hirao. 1989. Marine carotenoids, p. 255–262.In R. G. Ackman (ed.), Marine Biogenic Lipids, Fats and Oils. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Meyers, P. A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes.Organic Geochemistry 27:213–250.

    Article  CAS  Google Scholar 

  • Niemi, Å. 1979. Blue-green algal blooms and N∶P in the Baltic Sea.Acta Botanica Fennica 110:57–61.

    CAS  Google Scholar 

  • Owens, N. J. P. 1987. Natural variations in15N in the marine environment.Advances in Marine Biology 24:389–451.

    Article  Google Scholar 

  • Persson, G., H. Olsson, T. Wiederholm, andE. Willén. 1989. Lake Vättern, Sweden: A 20-year perspective.Ambio 18:209–215.

    Google Scholar 

  • Poutanen, E.-L. andK. Nikkilä. 2001. Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea.Ambio 4–5:179–183.

    Article  Google Scholar 

  • Ringberg, B. 1980. Description to the Quaternary map Malmö SO.Sveriges Geologiska Undersökning 38:1–179.

    Google Scholar 

  • Ruttenberg, K. C. 1992. Development of a sequential extraction method for different forms of phosphorous in marine sediments.Limnologica Oceanographica 37:1460–1482.

    CAS  Google Scholar 

  • Sjöberg, E. L., D. Georgala, andD. T. Rickard. 1984. Origin of interstitial water compositions in black clays (northeastern Sweden).Chemical Geology 42:147–158.

    Article  Google Scholar 

  • Sohlenius, G., K. C. Emeis, E. Andrén, T. Andrén, andA. Kohly. 2001. Development of anoxia during the Holocene fresh-brackish water transition in the Baltic Sea.Marine Geology 177: 221–242.

    Article  CAS  Google Scholar 

  • Sohlenius, G., J. Sternbeck, E. Andrén, andP. Westman. 1996. Holocene history of the Baltic Sea as recorded in a sediment core from the Gotland Deep.Marine Geology 134:183–201.

    Article  CAS  Google Scholar 

  • Sohlenius, G. andP. Westman. 1998. Salinity and redox alternations in the northwest Baltic proper during the late Holocene.Boreas 27:101–114.

    Article  Google Scholar 

  • Struck, U., K. C. Emeis, M. Voss, C. Christiansen, andH. Kunzendorf. 2000. Records of southern and central Baltic Sea eutrophication in δ13C and δ15N of sedimentary matter.Marine Geology 164:157–171.

    Article  CAS  Google Scholar 

  • Stumm, W. andJ. J. Morgan. 1996. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd edition, John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Voss, M., G. Nausch, andJ. P. Montoya. 1997. Nitrogen stable isotope dynamics in the central Baltic Sea: Influence of deep-water renewal on the N-cycle changes.Marine Ecology Progress Series 158:11–21.

    Article  CAS  Google Scholar 

  • Wasmund, N. 1997. Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions.Internationale Revue der Gesamten Hydrobiologie 82:169–184.

    Article  Google Scholar 

  • Watts, C. D. andJ. R. Maxwell. 1977. Carotenoid diagenesis in a marine sediment.Geochimica et Cosmochimica Acta 41:493–497.

    Article  CAS  Google Scholar 

  • Webster, K. W. andR. H. Peters. 1978. Some size dependent inhibitions of larger cladoceran filters in filamentous suspension.Limnology and Oceanography 23:1238–1245.

    Google Scholar 

  • Westman, P., B. Gustafsson, S. Wastegård, A. Omstedt, andK. Schoning. 1999. Salinity change in the Baltic Sea during the last 8500 years: Evidence, causes and models. SKB-TR-99-38. Swedish Nuclear Fuel and Waste Management Company, Stockholm, Sweden.

    Google Scholar 

  • Westman, P. andG. Sohlenius 1999. Diatom stratigraphy in five off-shore sediment cores from the north-western Baltic implying large scale circulation changes during the last c. 8500 years.Journal of Paleolimnology 22:53–69.

    Article  Google Scholar 

  • Winterhalter, B. 1972. On the geology of the Bothnian Sea, an epeiric sea that has undergone Pleistocene glaciation.Geological Survey of Finland 258:1–66.

    Google Scholar 

  • Winterhalter, B. 1992. Late-Quaternary stratigraphy of Baltic Sea basins—A review.Bulletine of the Geological Society of Finland 64:189–194.

    Google Scholar 

  • Winterhalter, B., T. Flodén, H. Ignatius, S. Axberg, andL. Niemistö. 1981. Geology of the Baltic Sea, p. 1–121.In A. Voipio (ed.), The Baltic Sea. Elsevier Oceanographic Series. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Züllig, H. 1981. On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton.Limnology and Oceanography 26:970–976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Westman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westman, P., Borgendahl, J., Bianchi, T.S. et al. Probable causes for cyanobacterial expansion in the Baltic Sea: Role of anoxia and phosphorus retention. Estuaries 26, 680–689 (2003). https://doi.org/10.1007/BF02711979

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02711979

Keywords

Navigation