Skip to main content
Log in

Optimization of machining techniques — A retrospective and literature review

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

In this paper an attempt is made to review the literature on optimizing machining parameters in turning processes. Various conventional techniques employed for machining optimization include geometric programming, geometric plus linear programming, goal programming, sequential unconstrained minimization technique, dynamic programming etc. The latest techniques for optimization include fuzzy logic, scatter search technique, genetic algorithm, Taguchi technique and response surface methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler Y P, Markova E V, Granovsky Y V 1975The design of experiments to find optimal conditions (Moscow: Mir Publishers)

    Google Scholar 

  • Agapiou J S 1992 The optimization of machining operations based on a combined criterion, Part 1: The use of combined objectives in single-pass operations, Part 2: Multi-pass operations.J. Eng. Ind., Trans. ASME 114: 500–513

    Article  Google Scholar 

  • Ai X, Xiao S 1985Metal cutting condition handbook (China: Mechanics Industry Press)

    Google Scholar 

  • Ai X, Tao Q, Xiao S 1966Metal cutting condition handbook (China: Mechanics Industry Press)

    Google Scholar 

  • Armarego E J A, Ostafiev D 1998 A study of a proprietary computerized technological machining performance database.8th Int. Manufacturing Conference, pp 26–33

  • Armarego E J A, Brown R H 1969The machining of metals (Englewood Cliffs, NJ: Prentice Hall)

    Google Scholar 

  • ASME 1952 Research committee on metal cutting data and bibliography.Manual on cutting of metals with single point tools 2nd edn.

  • Barker T B 1990Engineering quality by design (New York: Marcel Dekker)

    Google Scholar 

  • Benton W C 1991 Statistical process control and the Taguchi method: A comparative evaluation.Int. J. Prod. Res. 29: 1761–1770

    Article  Google Scholar 

  • Bhattacharya A, Faria-Gonzalez R, Inyong H 1970 Regression analysis for predicting surface finish and its application in the determination of optimum machining conditions.Trans. Am. Soc. Mech. Eng. 92:711

    Google Scholar 

  • Box G E P, Hunter J S 1957 Multifactor experimental Design.J. Ann. Math. Stat. 28:

  • Brewer R C 1966 Parameter Selection Problem in Machining.Ann. CIRP 14:11

    Google Scholar 

  • Brewer R C, Rueda R 1963 A simplified approach to the optimum selection of machining parameters.Eng. Dig. 24(9): 133–150

    Google Scholar 

  • Byrne D M, Taguchi S 1987 The Taguchi approach to parameter design.Quality Progress 20: 19–26

    Google Scholar 

  • Chanin M N, Kuei Chu-Hua, Lin C 1990 Using Taguchi design, regression analysis and simulation to study maintenance float systems.Int. J. Prod. Res. 28: 1939–1953

    Article  Google Scholar 

  • Chen M, Chen K Y 2003 Determination of optimum machining conditions using scatter search.New optimization techniques in engineering, pp 681–697

  • Cochran G, Cox G M 1962Experimental design (New Delhi: Asia Publishing House)

    Google Scholar 

  • Daetz D 1987 The effect of product design on product quality and product cost.Quality Progress 20(6): 54–61

    Google Scholar 

  • El Baradie M A 1993 Surface roughness model for turning grey cast iron (154 BHN).Proc. Inst. Mech. Eng. 207: 43–50

    Google Scholar 

  • Ermer D S, Kromordihardjo S 1981 Optimization of multi-pass turning with constraints.J. Eng. Ind. 103: 462–468

    Article  Google Scholar 

  • Ghosh S 1990Statistical design and analysis of industrial experiments (New York: Marcel Dekker)

    MATH  Google Scholar 

  • Gilbert W W 1950 Economics of machining. In Machining-Theory and practice.Am. Soc. Met. 476–480

  • Gopalakrishnan B, Khayyal F A 1991 Machine parameter selection for turning with constraints: An analytical approach based on geometric programming.Int. J. Prod. Res. 29: 1897–1908

    Article  MATH  Google Scholar 

  • Hassan G A, Suliman S M A 1990 Experimental modeling and optimization of turning medium carbon steel.Int. J. Prod. Res. 28: 1057–1065

    Article  Google Scholar 

  • Hinduja S, Petty D J, Tester M, Barrow G 1985 Calculation of optimum cutting conditions for turning operations.Proc. Inst. Mech. Eng. 199(B2): 81–92

    Google Scholar 

  • Johnston R E 1964 Statistical methods in foundry expts.AFS Trans. 72: 13–24

    Google Scholar 

  • Kackar R N, Shoemaker A C 1986 Robust design: A cost effective method for improving manufacturing processes.AT & T Tech. J. 65(Mar–Apr): 39–50

    Google Scholar 

  • Kamat Y V, Rao M V 1994 A Taguchi optimization of the manufacturing process for die cast components.Proc. 6th AIMTDR Conference, Bangalore, 174–179

  • Kasilova A G, Mescheryakov R K 1985Technological machining handbook (Englewood Cliffs, NJ: Prentice Hall) Vol. 2

    Google Scholar 

  • Klir G J, Yuan B 1998Fuzzy system and fuzzy logic theory and practice (Englewood Cliffs, NJ: Prentice Hall)

    Google Scholar 

  • Kosko B 1997Neural network and fuzzy systems-A dynamic approach to machine intelligence (New Delhi: Prentice Hall of India)

    Google Scholar 

  • Kroneberg M 1966Theory and practice for operation and development of machining process (Oxford: Pergamon)

    Google Scholar 

  • Kuo L Y, Yen J Y 2002 A genetic algorithm based parameter-tuning algorithm for multi dimensional motion control of a computer numerical control machine tool.Proc. Inst. Mech. Eng. B216:

  • Lambert B K, Taraman K 1973 Development and utilization of a mathematical model of a turning operation.Int. J. Prod. Res. 11: 69–81

    Article  Google Scholar 

  • Lin K M, Kackar R N 1985 Wave soldering optimization by orthogonal array design method.Electrical packaging and production 108–115

  • Lin, Paul K H, Sullivan L P, Taguchi G 1990 Using Taguchi methods in quality engineering.Quality Progress 55–59

  • Moneymaker D R, Hubbard A R 1987 Loss function techniques as applied to steel foundry processes.AFS Trans. 95:755–756

    Google Scholar 

  • Noordin M Yet al 2004 Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel.J. Mater. Process Technol. 145: 46–58

    Article  Google Scholar 

  • Ostafiev D 1999Multiple constraint optimization analysis and software for selecting machining condition on rough turning operation. Ph D thesis, University of Melbourne, Melbourne, Australia

    Google Scholar 

  • Petropoulos P G 1973 Optimal selection of machining rate variable by geometric programming.Int. J. Prod. Res. 11: 305–314

    Article  Google Scholar 

  • Phadke M S 1986 Design optimization case studies.AT & T Tech. J. 65(Mar–Apr): 51–84

    Google Scholar 

  • Pignatiello J J 1988 An overview of the strategy and tactics of Taguchi.Inst. Ind. Eng. Trans. 20: 247–254

    Google Scholar 

  • Pignatiello J J 1993 Strategies for robust multi-response quality engineering.Inst. Ind. Eng. Trans. 25: 5–25

    Google Scholar 

  • Prasad A V S R K, Rao P N, Rao U R K 1997 Optimal selection of process parameters for turning operations in a CAPP system.Int. J. Prod. Res. 35: 1495–1522

    Article  MATH  Google Scholar 

  • Sandvik A B 1981 Coroplan process planning software and coroplan user manual, Sandvik Automation, GmbH

  • Singh H, Kumar P 2003 Quality optimization of turned parts (En24 steel) by Taguchi method.Product. J. 44: 43–49

    Google Scholar 

  • Singh H, Kumar P 2004a Tool wear optimization in turning operation by Taguchi method.Indian J. Eng. Mater. Sci. 11: 19–24

    Google Scholar 

  • Singh H, Kumar P 2004b Effect on power consumption for turned parts using Taguchi technique,Product. J. 45: 231–238

    Google Scholar 

  • Singh H, Kumar P 2005 Optimizing cutting force for turned parts using Taguchi’s parameter design approach.Indian J. Eng. Mater. Sci. 12: 97–103

    Google Scholar 

  • Sundaram R M 1978 An application of goal programming technique in metal cutting.Int. J. Prod. Res. 16: 375–382

    Article  Google Scholar 

  • Taguchi G 1989Quality engineering in production systems (New York: McGraw-Hill)

    Google Scholar 

  • Taraman K 1974 Multi-machining output-multi independent variable turning research by response surface methodology.Int. J. Prod. Res. 12: 232–245

    Google Scholar 

  • Taylor F W 1907 On the art of cutting metals.Trans. ASME 28: 31–35

    Google Scholar 

  • Tsai P 1986An optimization algorithm and economic analysis for a constrained machining model. PhD thesis, West Virginia University

  • Tsui K L 1999 Robust design optimization for multiple characteristics problems.Int. J. Prod. Res. 37: 433–445

    Article  MATH  Google Scholar 

  • Walvekar A G, Lambert B K 1970 An application of geometric programming to machining variable selection.Int. J. Prod. Res. 8: 3

    Article  Google Scholar 

  • Wang X, Jawahir I S 2004 Web based optimization of milling operations for the selection of cutting conditions using genetic algorithms.Proc. Inst. Mech. Eng. 218: 212–223

    Google Scholar 

  • Wu V 1982Off-line quality control: Japanese quality engineering (Dearborn, MI: American Supplier Institute)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, A., Singh, H. Optimization of machining techniques — A retrospective and literature review. Sadhana 30, 699–711 (2005). https://doi.org/10.1007/BF02716704

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02716704

Keywords

Navigation