Skip to main content
Log in

A covariant multipole formalism for extended test bodies in general relativity

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

A discussion and criticism is given of various forms that have been put forward for the multipole theory of an extended test body in curved space-time, and a new treatment is proposed, in which the effect of an electromagnetic field is included and in which the covariance is retained throughout by the use of bitensors. Included in this is a covariant definition of the world-line of the mass centre. Equations of motion are derived in the pole-dipole approximation and a comparison is made with the previous theories. It is seen that, although the new theory avoids the defects mentioned in the former theories, solutions of our equations satisfy those of the former theories if terms quadratic in the spin are neglected.

Riassunto

Si discutono e si criticano le varie forme, che sono state esposte sinora, della teoria multipolare di un corpo di prova esteso nello spazio-tempo curvo, e si propone un nuovo trattamento, in cui si tien conto dell’effetto di un campo elettromagnetico nel quale si mantiene dappertutto l’evidente covarianza con l’uso di bitensori. In questo si comprende una definiziore covariante della linea universale del centro di massa. si deducono le equazioni del moto nell’approssimazione polo-dipolo e si fa un confronto con le teorie precedenti. Si vede che, sebbene la nuova teoria eviti i difetti menzionati nelle precedenti teorie, le soluzioni delle nostre equazioni soddisfano quelle delle teorie precedenti se si trascurano termini quadratici nello spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. M. Mathisson:Acta Phys. Polon.,6, 163 (1937).

    Google Scholar 

  2. We have adopted a slightly different notation from that of the papers quoted. For details of the conventions and notation used here, see Sect.2.

  3. J. Weyssenhoff andA. Raabe:Acta Phys. Polon.,9, 7 (1947).

    MathSciNet  Google Scholar 

  4. A. Papapetrou:Proc. Roy. Soc.,A 209, 248 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Corinaldesi andA. Papapetrou:Proc. Roy. Soc.,A 209, 259 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  6. W. Tulczyjew:Acta Phys. Polon.,18, 393 (1959).

    MathSciNet  MATH  Google Scholar 

  7. B. Tulczyjew andW. Tulczyjew: article inRecent Developments in General Relativity (London, 1962), p. 465.

  8. C. Møller:Comm. Dublin Inst. Adv. Studies, A 5, (1949), has shown that an extended body of positive definite energy density and of given rotational angular momentum about its mass centre must be larger than a certain minimum size.

  9. Loc. cit. ref. (8).

  10. D. Bohm andJ.-P. Vigier:Phys. Rev.,109, 1882 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. A. Schouten:Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications, 2nd. ed. (Berlin, 1954).

  12. B. S. DeWitt andR. W. Brehme:Ann. Phys. (N. Y.),9, 220 (1960). See also Chapter II ofJ. L. Synge:Relativity: The General Theory (Amsterdam, 1960).

    Article  MathSciNet  ADS  Google Scholar 

  13. Loc. cit. refs. (12).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. For a thorough study of various possibilities, seeM. H. L. Pryce:Proc. Roy. Soc.,A 195, 62 (1948), and alsoC. Møller: loc. cit. ref. (8).

    Article  MathSciNet  ADS  Google Scholar 

  15. See Sect.2 and footnotes (12, 14).

  16. Loc. cit. ref. (15).

  17. We here follow the definition of spin given byD. W. Sciama: article inRecent Developments in General Relativity (London, 1962), p. 415. See alsoT. W. B. Kibble:Journ. Math. Phys.,2, 212 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. L. Rosenfeld:Mem. Acad. Roy. Belg.,18, 6 (1940). See also ref. (21).

    MathSciNet  Google Scholar 

  19. R. Utiyama:Phys. Rev.,101, 1597 (1956).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. SeeL. Rosenfeld: loc. cit. ref. (22).

    Article  MathSciNet  MATH  Google Scholar 

  21. SeeJ. A. Schouten: loc. cit. ref. (11), Chapter II, Sect.10.

    Article  MathSciNet  Google Scholar 

  22. For the technique of obtaining these covariant expansions, seeB. S. DeWitt andR. W. Brehme: loc. cit. ref. (12).

    Article  MathSciNet  Google Scholar 

  23. L. I. Schiff:Phys. Rev. Lett.,4, 215 (1962).

    Article  ADS  Google Scholar 

  24. A. Peres:Nuovo Cimento,28, 1091 (1963).

    Article  MATH  Google Scholar 

  25. See,e.g.,J. L. Synge: loc. cit. ref. (12).

    Article  Google Scholar 

  26. SeeB. S. DeWitt andR. W. Brehme: loc. cit. ref. (12).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, W.G. A covariant multipole formalism for extended test bodies in general relativity. Nuovo Cim 34, 317–339 (1964). https://doi.org/10.1007/BF02734579

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02734579

Navigation