Skip to main content
Log in

Mechanisms of pressure filtration of liquid aluminum alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The Prefil Footprinter, a portable pressure filtration instrument, is usually used to detect the quality of liquid aluminum alloys. However, no investigations have ever been done to calculate the cake resistance to date. Based on the identification and classification of flow behavior using the first derivative method for filtrate mass vs filtration time curves, conventional filtration equations are successfully employed to understand the filtration behaviors. From the analyses of the variations of cake resistance with filtration time, the filtration mechanisms are discussed in detail over the different filtration stages. During the steady stage, either incompressible or compressible cake mode is the main mechanism. At the initial and terminal transient stages, however, deep-bed filtration, complete straining, and solidification clogging may appear. Solid inclusions in liquid metal have significant influence on the cake structures and properties. Some important issues related to the heterogeneity of filter media and test methodology are highlighted in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Enright and I.R. Hughes: Foundryman, 1996, vol. 89 (11), pp. 390–95.

    Google Scholar 

  2. P.G. Enright: Ensuring the Highest Quality and Reliability in Light Alloy Castings, Suttow Coldfield, United Kingdom, Oct. 28–29, IBF Publications, Birmingham, United Kingdom, 1996, pp. 6.1–6.18.

  3. P.G. Enright: Equipment Installation and Service Manual: Prifil Footprinter® Series 2—Aluminium Version, Jan. 1997.

  4. P. Rochette and A.A. Simard: Aluminium, 2000, vol. 76, pp. 20–26.

    CAS  Google Scholar 

  5. L.A. Godlewski and J.W. Zindel: AFS Trans., 2001, vol. 109, pp. 315–25.

    Google Scholar 

  6. A.A. Simard, F. Dallaire, J. Proulx, and P. Rochette: in Light Metals, R.D. Peterson, ed., TMS, Warrendale, PA, 2000, pp. 739–44.

    Google Scholar 

  7. A. Simard, J. Proulx, and D. Paquin: Int. AFS Conf. on Molten Aluminium Processing, Lake Buena Vista, FL, Nov. 11–13, 2001.

  8. X. Cao: Scripta Mater., 2005, vol. 52, pp. 839–42.

    Article  CAS  Google Scholar 

  9. X. Cao: Mater. Sci. Eng., A, 2005, vol. 403, pp. 101–11.

    Article  Google Scholar 

  10. X. Cao: Mater. Sci. Eng., A, 2005, vol. 403, pp. 94–100.

    Article  Google Scholar 

  11. X. Cao and M. Jahazi: Mater. Sci. Eng., A, 2005, vol. 408, pp. 234–42.

    Article  Google Scholar 

  12. X. Cao and M. Jahazi: Mater. Sci. Technol., 2005, vol. 21, pp. 1192–98.

    Article  CAS  Google Scholar 

  13. X. Cao: J. Mater. Sci., 2006, vol. 41, pp. 4285–92.

    Article  CAS  Google Scholar 

  14. A. Rushton, A.S. Ward, and R.G. Holdich: Solid Liquid Separation Technology, Weinheim, Germany, 1996, pp. 7 and 33–83.

  15. M.J. Matteson and C. Orr: Filtration Principles and Practices, 2nd ed, Marcel Dekker Inc., New York, NY, 1987, pp. 133–61.

    Google Scholar 

  16. N.P. Cheremisinoff: Liquid Filtration, 2nd ed., Butterworth-Heinemann, Boston, MA, 1998, pp. 59–87.

    Google Scholar 

  17. C.O. Bennett and J.E. Myers: Momentum, Heat, and Mass Transfer, 3rd ed., McGraw-Hill Book Company, New York, NY, 1982, pp. 224–46.

    Google Scholar 

  18. C.E. Eckert, R. Mutharasan, D. Apelian, and R.E. Miller: Light Metals, TMS, Warrendale, PA, 1985, pp. 1225–48.

    Google Scholar 

  19. D. Apelian: Proc. from Materials Solutions Conf.’98 on Aluminum Casting Technology, M. Tiryakioglu and J. Campbell, eds., 1998, pp. 153–62.

  20. C.E. Eckert, R.E. Miller, D. Apelian, and R.E. Mutharasan: Light Metals, TMS, Warrendale, PA, 1984, pp. 1281–304.

    Google Scholar 

  21. E. Kehat, A. Lin, and A. Kaplan: I & EC Process Design and Development, 1967, vol. 6 (1), pp. 48–55.

    Article  CAS  Google Scholar 

  22. P.M. Heertjes and H.V.D. HAAS: Rec. Tran. Chim., 1949, vol. 68, pp. 361–83.

    CAS  Google Scholar 

  23. X. Cao and J. Campbell: AFS Trans., 2000, vol. 108, pp. 391–400.

    CAS  Google Scholar 

  24. X. Cao and J. Campbell: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1409–20.

    Article  Google Scholar 

  25. X. Cao and J. Campbell: Metall. Mater. Trans. A, 2003, vol. 35, pp. 1425–35.

    Article  Google Scholar 

  26. M. Lovis: N-Tec Ltd., private communication, Oct. 2004.

  27. X. Cao, N. Saunders, and J. Campbell: J. Mater. Sci., 2004, vol. 39, pp. 2303–14.

    Article  CAS  Google Scholar 

  28. X. Cao and J. Campbell: in Shape Casting: The John Campbell Symp., M. Tiryakiogly and P.N. Crepeau, eds., TMS, Warrendale, PA, pp. 255–62 (2005).

    Google Scholar 

  29. P.M. Heertjes: Chem. Eng. Sci., 1957, vol. 6, pp. 190–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X. Mechanisms of pressure filtration of liquid aluminum alloys. Metall Mater Trans B 37, 1075–1083 (2006). https://doi.org/10.1007/BF02735030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02735030

Keywords

Navigation