Skip to main content
Log in

Overview and applications of the reproducing Kernel Particle methods

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

Multiple-scale Kernel Particle methods are proposed as an alternative and/or enhancement to commonly used numerical methods such as finite element methods. The elimination of a mesh, combined with the properties of window functions, makes a particle method suitable for problems with large deformations, high gradients, and high modal density. The Reproducing Kernel Particle Method (RKPM) utilizes the fundamental notions of the convolution theorem, multiresolution analysis and window functions. The construction of a correction function to scaling functions, wavelets and Smooth Particle Hydrodynamics (SPH) is proposed. Completeness conditions, reproducing conditions and interpolant estimates are also derived. The current application areas of RKPM include structural acoustics, elastic-plastic deformation, computational fluid dynamics and hyperelasticity. The effectiveness of RKPM is extended through a new particle integration method. The Kronecker delta properties of finite element shape functions are incorporated into RKPM to develop a Cm kernel particle finite element method. Multiresolution and hp-like adaptivity are illustrated via examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amsden, A.A. and Harlow, F.H. (1970), “The SMAC Method, A Numerical Technique for Calculating Incompressible Fluid Flow”, Tech. Report LA-4370, Los Alamos Scientific Laboratory.

  • Babuska, I. and Melenk, J.M. (1995), “The Partition of Unity Finite Element Method”, Univ. of Maryland, Technical Note BN-1185.

  • Babuška, I. (1973), “The Finite Element Method with Lagrangian Multiplies,”Num. Math.,20, pp. 179–192.

    Article  Google Scholar 

  • Beklkin, G.R., Coifman, I., Daubechies, S., Mallat, Y., Meyer, L., Raphael, and Ruskai, B. (eds) (1992), “Wavelets and Their Applications”, Cambridge, MA.

  • Belytschko, T. (1994), “Are Finite Elements Passé?”,USACM Bulletin,7, 3, pp. 4–7.

    Google Scholar 

  • Belytschko, T., Gu, L. and Lu, Y.Y. (1994a), “Fracture and Crack Growth by EFG Methods,”Modelling Simul. Mater. Sci. Eng.,2, pp. 519–534.

    Article  Google Scholar 

  • Belytschko, T., Lu, Y.Y. and Gu, L. (1994b), “Element Free Galerkin Methods”,International Journal for Numerical Methods in Engineering,37, pp. 229–256

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko, T., Lu, Y.Y. and Gu, L. (1994c), “A New Implementation of the Element Free Galerkin Method”,Computer Methods in Applied Mechanics and Engineering 113, pp. 397–414.

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko, T. (1983), “An Overview of Semidiscretization and Time Integration Procedures”, eds. Belytschko, T. and Hughes, T.J.R.,Computational Methods for Transient Analysis, North-Holland, Amsterdam, pp. 1–63.

    Google Scholar 

  • Belytschko, T. and Kennedy, J.M. (1978), “Computer Methods for Subassembly Simulation,”Nuclear Engrg. Des.,49, pp. 17–38.

    Article  Google Scholar 

  • Brezzi, F. (1974), “On the Existance, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrange Multipliers”,R. A. I. R. O.,8-R2, pp. 129–151.

    MathSciNet  Google Scholar 

  • Chen, J.S. and Pan, C. (1995), “A Pressure Projection Method for Nearly Incompressible Rubber Hyperelasticity, Part I: Theory”, accepted byJournal of Applied Mechanics.

  • Chen, J.S., Pan, C. and Chang, T.Y.P. (1995b), “On The Control of Pressure Oscillation in Bilinear-Displacement Constant-Pressure Element”,Comput. Meth. Appl. Mech. Engng., in press.

  • Chen, J.S., Wu, C.T. and Pan, C. (1995c), “A Pressure Projection Method for Nearly Incompressible Rubber Hyperlasticity, Part II: Applications”, accepted by Journal of Applied Mechanics.

  • Chen, J.S., Han, H., Wu, C.T. and Duan, W. (1995d), “On the Perturbed Lagrangian Formulation for Nearly Compressible and Incompressible Hyperelasticity”, submitted toComputer Methods in Applied Mechanics and Engineering.

  • Chen, J.S., Satyamurthy, K.S. and Hirschfelt, L.R. (1994), “Consistent Finite Element Procedures for Nonlinear Rubber Elasticity with a Higher Order Strain Energy Function”,Comput. & Struct.,50, pp.715–727.

    Article  MATH  Google Scholar 

  • Chui, C.K. (1992), “An Introduction to Wavelets”, Academic Press.

  • Daubechies (1992), “Ten Lectures on Wavelets”,CBMS/NSF Series in Applied Mathematics,61, SIAM Publication.

  • Duarte, C.A. and Oden, J.T. (1995), “Hp Clouds— A Meshless Method to Solve Boundary-Value Problems”,TICAM Report 95-05.

  • Dym, C.L. and Shames, I.H. (1973), “Solid Mechanics: A Variational Approach”, McGraw-Hill, Inc.

  • Gent, A.N. and Lindley, P.B. (1959), “The Compression of Bonded Rubber Blocks”,Proc. Inst. Mech. Engrs.,173, pp. 11–122.

    Google Scholar 

  • Glowinski, R., Lawton, W.M., Ravachol, M. and Tenenbaum, E. (1990), “Wavelets solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension”. Glowinski, R. and Lichnewsky, A. eds.,Computing Methods in Applied Sciences and Engineering, SIAM, Philadelphia, pp. 55–120.

    Google Scholar 

  • Gingold, R.A. and Monaghan, J.J. (1982), “Kernel Estimates as a Basis for General Particle Methods in Hydrodynamics”,J. Comp. Phys.,46, pp. 429–453.

    Article  MATH  MathSciNet  Google Scholar 

  • Gingold, R.A. and Monaghan, J.J. (1977), “Smoothed Particle Bydrodynamics: Theory and Application to Non-Spherical Stars”,Mon. Not. Roy. Astron. Soc.,181, pp. 375–389.

    MATH  Google Scholar 

  • Grossmann, A. and Morlet, J. (1984), “Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape”,SIAM J. Math.,15, pp. 723–736.

    Article  MATH  MathSciNet  Google Scholar 

  • Haar, A. (1910), “Zur Theorie dr orthogonalen Funktionsysteme”,Math. Ann.,69, pp. 331–371.

    Article  MathSciNet  Google Scholar 

  • Harlow, F.H., Amsden, A.A. and Nix, J.R. (1976), “Relativistic Fluid Dynamics Calculation with Particle-in-Cell Technique”,J. Comput. Phys.,20.

  • Harlow, F.H., and Welch, J.E. (1965), “Numberical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface”,The Physics of Fluids,8, pp. 2182–2189.

    Article  Google Scholar 

  • Hirt, C.W. (1983), “Flow Analysis for Non-Experts”,Engineering Foundation Conference Proceedings, Modeling and Control of Casting and Welding Processes II.

  • Hirt, C.W. (1975), “SOLA-A Numerical Solution Algorithm for Transient Fluid Flows”, Los Alamos Scientific Laboratory Report LA-5852.

  • Huerta, A. and Liu, W.K. (1988), “Viscous Flow with Large Free Surface Motion”,Computer Methods in Applied Mechanics and Engineering,69, pp. 277–324.

    Article  MATH  Google Scholar 

  • Hughes, T.J.R., Liu, W.K. and Zimmerman, T.K. (1981), “Lagrangian-Eulerian Finite Element Formulations for Incompressible Viscous Flows”,Computer Methods in Applied Mechanics and Engineering,29, pp. 329–349.

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, T.J.R. (1987), “The Finite Element Method”, Prentice-Hall.

  • Hughes, T.J.R. (1980), “Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Medium”,Int. J. Numer. Mech. Engng.,15, pp. 141–1418.

    Google Scholar 

  • Johnson, G.R., Peterson, E.H. and Stryrk, R.A. (1993), “Incorporation of an SPH Option into the EPIC code for a Wide Range of High Velocity Impact Computations”, preprint.

  • Lancaster, P. and Salkauskas, K. (1981), “Surfaces Generated by Moving Least Squares Methods.”Mathematics of Computation,37, pp. 141–158.

    Article  MATH  MathSciNet  Google Scholar 

  • Libersky, L. and Petchek, A.G. (1990), “Smooth Particle Hydrodynamics with Strength of Materials”,Proceedings of The next Free-Lagrange Conference, Jackson Lake Lodge, Moran, Wyoming, June 3–7.

  • Liu, W.K. (1995), “An Introduction to Wavelet Reproducing Kernel Particle Methods”,USACM Bulletin,8, 1, pp. 3–16.

    Google Scholar 

  • Liu, W.K. and Chen, Y. (1995), “Wavelet and Multiple Scale Reproducing Kernel Methods”,International Journal for Numerical Methods in Fluids, Vol.21, pp. 901–932.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995a), “Reproducing Kernel Particle Methods for Structural Dynamics”,International Journal of Numerical Methods for Engineering,38, pp. 1655–1679.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.K., Jun, S. and Zhang, Y.F. (1995b), “Reproducing Kernel Particle Methods”,International Journal of Numerical Methods in Fluids,20, pp. 1081–1106.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.K., Li, Shaofan and Belytschko, T. (1995c), “Moving Least Square Kernel Galerkin Method (I) Methodology and Convergence”, submitted toComputer Methods in Applied Mechanics and Engieering.

  • Liu, W.K., Chen, Y. and Uras, R.A. (1995d), “Enrichment of the Finite Element Method with Reproducing Kernel Particle Method”,Current Topics in Computational Mechanics, eds. Cory, J.F. Jr. and Gordon, J.L., ASME PVP,305, pp. 253–258.

  • Liu, W.K. and Hu, Y.K. (1994), “Finite Element Hydrodynamic Friction Model for Metal Forming,”International Journal of Numerical Methods for Engineering,37, pp. 4015–4037.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.K., Hu, Y.K. and Belytschko, T. (1994), “Multiple Quadrature Underintegrated Finite Elements”,Int. J. Numer. Mech. Engng. 37, pp. 3262–3289.

    MathSciNet  Google Scholar 

  • Liu, W.K. and Hu, Y.K. (1993), “An ALE Hydrodynamic Lubricated Finite Element Method with Application to Strip Rolling”,International Journal of Numerical Methods for Engineering,36, pp. 855–880.

    Article  MATH  Google Scholar 

  • Liu, W.K. and Oberste-Brandenburg, C. (1993), “Reproducing Kernel and Wavelet Particle Methods”,Aerospace Structures: Nonlinear Dynamics and System Response, eds. Cusumano, J.P., Pierre, C., and Wu, S.T., AD 33, ASME, pp. 39–56.

  • Liu, W.K., Adee, J. and Jun, S. (1993), “Reproducing Kernel Particle Methods for Elastic and Plastic Problems”,Advanced Computational Methods for Material Modeling, eds. Beson, D.J. and Asaro, R.A., AMD 180 and PVP 268, ASME, pp. 175–190.

  • Liu, W.K. (1992), “Arbitrary Lagrangian-Eulerian Finite Elements for Fluid-Shell Interaction Problems”,J. of the Braz. Soc. of Mech. Sc.,XIV-4, pp. 347–368.

    Google Scholar 

  • Liu, W.K. and Haeussermann, U. (1992), “Multiple Temporal and Spatial Scale Methods,”New Methods in Transient Analysis, P. Smolinski, W. K. Liu, G. Hulbert and K. Tamma, eds., PVP 246/AMD 143, ASME, pp. 51–64.

  • Liu, W.K. and Hu, Y.K. (1992), “ALE Finite Element Formulation for Ring Rolling Analysis,”International Journal of Numerical Methods for Engineering,33, pp. 1217–1236.

    Article  MATH  Google Scholar 

  • Liu, W.K., Hu, Y.K. and Belytschko, T. (1992a), “ALE Finite Elements with Hydrodynamic Lubricated for Metal Forming”,Nuclear Engineering and Design,138, pp. 1–10.

    Article  Google Scholar 

  • Liu, W.K., Zhang, Y.F. and Ramirez, M.R. (1991a), “Multiple Scale Finite Element Methods”,International Journal for Numerical Methods in Engineering,32, pp. 969–990.

    Article  MATH  Google Scholar 

  • Liu, W.K., Zhang, Y.F., Belytschko, T. and Chen, J.S. (1991b), “Adaptive ALE Finite Elements with Particular Reference to External Work Rate on Frictional Interface”,Computer Methods in Applied Mechanics and Engineering,93, pp. 189–216.

    Article  MATH  Google Scholar 

  • Liu, W.K., Belytschko, T. and Chen, J.S. (1988a), “Nonlinear Versions of Flexurally Superconvergent Elements”,Comput. Meth. Appl. Mech. Engng.,71, pp. 24–256.

    Article  Google Scholar 

  • Liu, W.K., Chang, H. and Belytschko, T. (1988b), “Arbitrary Lagrangian and Eulerian Petrov-Galerkin Finite Elements for Nonlinear Continua”,Computer Methods in Applied Mechanics and Engineering,68, pp. 259–310.

    Article  MATH  Google Scholar 

  • Liu, W.K., Belytschko, T. and Chang, H. (1986), “An Arbitrary Lagrangian Eulerian Finite Element Method for Path-Dependent Materials”,Computer Methods in Applied Mechanics and Engineering,58, pp. 227–246.

    Article  MATH  Google Scholar 

  • Liu, W.K., Belytschko, T., Ong, J.S.J. and Law, E. (1985a), “Use of Stabilization Matrices in Nonlinear Finite Element Analysis”,Engineering Computations,2, pp. 47–55.

    Google Scholar 

  • Liu, W.K., Ong, J.S.J. and Uras, R.A. (1985b), “Finite Element Stabilization Matrices—A Unification Approach,”Comput. Meth. Appl. Mech. Engng.,53, pp. 13–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.K. and Belytschko, T. (1984), “Efficient Linear and Nonlinear Heat Conduction with a Quadrilateral Element”,International Journal for Numerical Methods in Engineering,20, pp. 931–948.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.K. (1981), “Finite Element Procedures for Fluid-Structure Interactions and Applications to Liquid Storage Tanks”,Nuclear Engineering and Design,64, 2, pp. 221–238.

    Article  Google Scholar 

  • Lucy, L. (1977), “A Numerical Approach to Testing the Fission Hypothesis”,A.J.,82, pp. 1013–1024.

    Article  Google Scholar 

  • Lu, Y.Y., Belytschko, T. and Gu, L. (1994), “A New Implementation of the Element Free Galerkin Method”,Comput. Meth. Appl. Mech. Engng.,113, pp. 397–414.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallat, S. (1989), “Multi-resolution Approximations and Wavelet Orthogonal Bases of L2(R)”,Trans. Amer. Math. Soc.,315, pp. 69–87.

    Article  MATH  MathSciNet  Google Scholar 

  • Monaghan, J.J. (1982), “Why Particle Methods Work”,SIAM J. Sci. Stat. Comput.,3, pp. 422–433.

    Article  MATH  MathSciNet  Google Scholar 

  • Monaghan, J.J. and Gingold, R.A. (1983), “Shock Simulation by the Particle Method SPH”,J. Comp. Phys.,52, pp. 374–389.

    Article  MATH  Google Scholar 

  • Monaghan, J.J. (1988), “An Introduction to SPH”,Comp. Phys. Comm.,48, pp. 89–96.

    Article  MATH  Google Scholar 

  • Mooney, M. (1940), “A Theory of Large Elastic Deformation”,J. Appl. Phys.,11, pp. 582–592.

    Article  Google Scholar 

  • Nayroles, B., Touzot, G. and Villon, P. (1992), “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements”,Computational Mechanics,10, pp.307–318.

    Article  MATH  Google Scholar 

  • Nichols, B.D. and Hirt, C.W. (1971), “Improved Free Surface Boundary Conditions for Numerical Incompressible Flow Calculations”,J. Comp. Phys.,8.

  • Oñate, E., Idelsohn, S. and Zienkiewicz, O.C. (1995), “Finite Point Methods in Computational Mechanics”,International Center for Numerical Methods in Engineering, July.

  • Penn, R. W. (1970), “Volume Changes Accompanying the Extension of Rubber”,Trans. Soc. Rheo.,14, 4, pp. 50–517.

    Google Scholar 

  • Poularikas, A.D. and Seely, S., “Signals and Systems”, PWS-KENT Publishing Company, 2nd edition.

  • Rivlin, R.S. (1956), “Rheology Theory and Applications”, ed. Eirich, F.R. 1, Chap. 10, pp. 351–385, Academic Press, New York.

    Google Scholar 

  • Shodja, H.M., Mura, T. and Liu, W.K. (1995), “Multiresolution analysis of a Micromechanical Model”,Computational Methods in Micromechanics, ASME AMD 212/MD 62, eds. S. Ghosh and M. Ostoja-Starzewski, pp. 33–54.

  • Stellingwerf, R.F. and Wingate, C.A. (1993), “Impact Modeling with Smooth Particle Hydrodynamics”,Int. J. Impact Engng.,14, pp. 707–718.

    Article  Google Scholar 

  • Strang, G. (1989), “Wavelets and Dilation Equations: a Brief Introduction”,SIAM Rev.,31, 4, pp. 614–627.

    Article  MATH  MathSciNet  Google Scholar 

  • Subbiah, S.,et al.(1989), “Non-isothermal Flow of Polymers into Two-dimensional, Thin Cavity Molds: A Numerical Grid Generation Approach”,Int. J. Heat Mass Transfer,32, 3, pp. 415–434.

    Article  Google Scholar 

  • Sulsky, D., Chen, Z. and Schreyer, H.L. (1992), “The Application of a Material-Spatial Numerical Method to Penetration”,New Methods in Transient Analysis, eds. Smolinski, P., Liu, W.K., Hulbert, G. and Tamma, K., ASME, PVP, Vol. 246/AMD143, pp 91–102.

  • Sussman, T.S. and Bathe, K.J. (1987), “A Finite Element Formulation for Incompressible Elastic and Inelastic Analysis”,Comput. & Struct.,26, pp. 357–409.

    Article  MATH  Google Scholar 

  • Williams, J.R. and Amaratunga, K. (1994), “Introduction to Wavelets in Engineering”,International Journal for Numerical Methods in Engineering,37, pp. 2365–2388.

    Article  MATH  MathSciNet  Google Scholar 

  • Yagawa, G., Yamada, T. and Kawai (1995), “Some Remarks on Free Mesh Method: A kind of Meshless Finite Element Methods”, To be presented at ICES-95.

  • Yeoh, O.H., “Characterization of Elastic Properties of Carbon Black Filled Rubber Vulcanizates”,Rubb. Chem. Technol.,63, pp. 79–805.

  • Yeoh, O.H. (1993), “Some Forms of the Strain Energy Function for Rubber”,Rubb. Chem. Technol.,66, pp. 754–771.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W.K., Chen, Y., Jun, S. et al. Overview and applications of the reproducing Kernel Particle methods. ARCO 3, 3–80 (1996). https://doi.org/10.1007/BF02736130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736130

Keywords

Navigation