Skip to main content
Log in

Topology optimization of dielectric substrates for filters and antennas using SIMP

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

In this paper a novel design procedure based on the integration of full wave Finite Element Analysis (FEA) and a topology design method employing Sequential Linear Programming (SLP) is introduced. The employed design method is the Solid Isotropic Material with Penalization (SIMP) technique formulated as a general non-linear optimization problem. SLP is used to solve the optimization problem with the sensitivity analysis based on the adjoint variable method for complex variables. A key aspect of the proposed design method is the integration of optimization tools with a fast simulator based on the finite element-boundary integral (FE-BI) method. The capability of the design method is demonstrated by two design examples. First, we developed a metamaterial substrate with arbitrary material composition and subject to a pre-specified antenna bandwidth enhancement. The design is verified and its performance is evaluated via measurements and simulation. As a second example, the material distribution for a Thermo-Photovoltaic (TPV) filter subject to pre-specified bandwidth and compactness criteria is designed. Results show that the proposed design method is capable of designing full three-dimensional volumetric material textures and printed conductor topologies for filters and patch antennas with enhanced performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kyriazidiou, C.A., Diaz, R.E. and alexopoulos, N.G. (2000) Novel material with narrow-band transparency window in the bulk.IEEE Trans. on Antennas and Propagation,48, (1), 107–116.

    Article  Google Scholar 

  2. Smith, D.R., Vier, D.C., Kroll N. and Schultz, S. (2000). Direct calculation of permeability and permittivity for a left-handed metamaterial.Applied Physics Letters,77, (14), 2246–2248.

    Article  Google Scholar 

  3. Gauthier, G.P., Courtay, A. and Rebeiz, G.M. (1997). Microstrip antennas on synthesized low dielectric-constant substrates.IEEE Trans. on Antennas and Propagation,45, (8), 1310–1314.

    Article  Google Scholar 

  4. Johnson, J.M. and Rahmat-Samii, Y. (1999). Genetic algorithms and method of moments (GA/MoM) for the design of integrated antennas.IEEE Trans. on. Antennas and Propagation,47, (10), 1606–1614.

    Article  Google Scholar 

  5. Michielssen, E., Sajer, J.M., Ranjithan, S. and Mittra, R. (1993). Design of light-weight, broad-band microwave absorbers using genetic algorithms.IEEE Trans. on Microwaves Theory and Techniques,41, (6/7), 1024–1031.

    Article  Google Scholar 

  6. Li, Z., Erdemli, Y.E., Volakis, J.L. and Papalambros, P.Y. (2002). Design optimization of conformal antennas by integrating stochastic algorithms with the hybrid finite element method.IEEE Trans. on AP,50, (5), 676–684.

    Google Scholar 

  7. Li, Z., Volakis, J.L. and Papalambros, P.Y. (1997). Designing broad-band patch antennas using the sequential quadratic programming method.IEEE Trans. on Antennas and Propagation,45, (11), 1689–1692.

    Article  Google Scholar 

  8. Dyck, D.N., Lowther, D.A. and Freeman, E.M. (1994). A method of computing the sensitivity in electromagnetic quantities to changes in materials and sources.IEEE Trans. on Magnetics,30, (5), 3415–3418.

    Article  Google Scholar 

  9. Yoo, J., Kikuchi, N. and Volakis, J.L. (2000). Structural optimization in magnetic devices by the homogenization design method.IEEE Trans. on Magnetics,36, (3), 574–580.

    Article  Google Scholar 

  10. Maxwell, J.C. (1873).A Treatise on Electricity and Magnetism, Oxford: Clarendon Press.

    Google Scholar 

  11. Lagrange, J.L. (1770). InRoyal Society of Turin, 123.

  12. Marrocco, A. and Pironneau, O. (1978). Optimum design with lagrangian finite elements: design of an electromagnet.Comput. Methods Appl. Mech. Eng.,15, 277–308.

    Article  Google Scholar 

  13. Hadamard, J. (1932).Le probleme de Cauchy et les equations aux derivees partielles lineaires hyperboliques. Hermann, Paris.

    Google Scholar 

  14. Rao, S. (1996).Engineering Optimization: Theory and Practice, 3rd ed., Wiley, New York.

    Google Scholar 

  15. Nakata, T. and Takahashi, N. (1983). New design method of permanent magnets by using the finite element method.IEEE Trans. on Magnetics,19, 2494–249.

    Article  Google Scholar 

  16. Hoole, S., Ratnajeevan, H., Subramaniam, S., Saldanha, R., Coulomb, J.L. and Sabonnadiere, J.C. (1991). Inverse problem methodology and finite elements in the identification of cracks, sources, materials, and their geometry in inaccessible locations.IEEE Trans. on Magnetics,27, 3433–3443.

    Article  Google Scholar 

  17. Davis, L. (1987).Genetic Algorithms and Simulated Annealing, Pitman, London.

    MATH  Google Scholar 

  18. Holland J. (1975).Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.

    Google Scholar 

  19. Haupt, R. (1995). An introduction of genetic algorithms for electromagnetics.IEEE Antennas and Propagation Magazine,37, (2), 7–15.

    Article  Google Scholar 

  20. Johnson, J.M. and Rahmat-Samii, Y. (1997). Genetic algorithms in engineering electromagnetics.IEEE Antennas and Propagation Magazine,39, (4), 7–25.

    Article  Google Scholar 

  21. Johnson, J.M. and Rahmat-Samii, Y. (1994). Genetic algorithm optimization and its application to antenna design.IEEE Antennas and Propagation International Symposium, Seattle, WA, USA.

  22. Simkin, J. and Trowbridge, C.W. (1991). Optimizing electromagnetic devices combining direct search methods with simulated annealing.Computation of Electromagnetic Fields (COMPUMAG), Sorrento, Italy.

  23. Gottvald, A., Preis, K., Magele, C., Biro, O. and Savini, A. (1991). Global optimization methods for computational electromagnetics.Computation of Electromagnetic Fields (COMPUMAG), Sorrento, Italy.

  24. Xueying, J., Xueqin, S. and Qingxin, Y. (1993). The application of expert system to electromagnet design.International Conference on Electromagnetic Field Problems and Applications, Beijing, 1993.

  25. Mohammed, O.A., Park, D.C., Uler, F.G. and Ziqiang, C. (1992). Design optimization of electromagnetic devices using artificial neural networks.International Magnetics Conference (INTERMAG'92), St. Louis, MO, USA.

  26. Enokizono, M. and Tsuchida, Y. (1994). Optimal design by boundary element method with fuzzy inference.9th Conference on the Computation of Electromagnetic Fields (COMPUMAG'93), Miami, FL, USA.

  27. Vivier, S., Gillon, F. and Brochet, P. (2001). Optimization techniques derived from experimental design method and their application to the design of a brushless direct current motor.IEEE Trans. on Magnetics,37, 3622–3626.

    Article  Google Scholar 

  28. Gillon, F. and Brochet, P. (2000). Screening and Response Surface Method applied to the numerical optimization of electromagnetic devices.12th Conference of the Computation of Electromagnetic Fields (COMPUMAG'99), Sapporo, Japan.

  29. Preis, K., Magele, C. and Biro, O. (1990). FEM and evolution strategies in the optimal design of electromagnetic devices.International Magnetics Conference INTERMAG, Brighton, UK.

  30. Bellina, F., Campostrini, P., Chitarin, G., Stella, A. and Trevisan, F. (1991). Automated optimal design techniques for inverse electromagnetic problems.Computation of Electromagnetic Fields (COMPUMAG), Sorrento, Italy.

  31. Sikora, J., Stodolski, M. and Wincenciak, S. (1988). Comparative analysis of numerical methods for shape designing. InElectromagnetic Fields in Electrical Engineering. A. Savini and J. Turowski (ed.), Plenum Press, New York, 293–298.

    Google Scholar 

  32. Li, Z., Papalambros, P.Y. and Volakis, J.L. (2002). Frequency selective surface design by integrating optimization algorithms with fast numerical methods.IEE Proceedings-Microwaves, Antennas and Propagation,149, (3), 175–180.

    Article  Google Scholar 

  33. Pawluk, K. and Rudnicki, M. (1988). The state of art in the synthesis of electromagnetic fields. InElectromagnetic Fields in Electrical Engineering. A. Savini and J. Turowski (ed.), Plenum Press, New York, 287–292.

    Google Scholar 

  34. Guarnieri, M. Stella, A. and Trevisan, F. (1990). A methodological analysis of different formulations for solving inverse electromagnetic problems.IEEE Trans. on Magnetics,26, 622–625.

    Article  Google Scholar 

  35. Takahashi, N. (1990). Optimal design method of magnetic circuit.COMPEL-The International Journal of Computation and Mathematics in Electrical and Electronic Engineering,9, 101–6.

    Google Scholar 

  36. Borghi, C.A., Di Barba, P., Fabbri, A., Rudnicki, M. and Savini, A. (2000). A benchmark problem in inverse magnetostatics solved by different multi-objective optimisation methods.International Journal of Applied Electromagnetics and Mechanics,12, 219–27.

    Google Scholar 

  37. Neittaanmaki, P., Rudnicki, M. and Savini, A. (1996),Inverse Problems and Optimal Design in Electricity and Magnetism. Vol. 1., Clarendon Press, Oxford, U.K.

    MATH  Google Scholar 

  38. Armstrong, A., Fan, M., Simkin, J. and Trowbridge, C.W. (1981). Automated optimization of magnet design using the boundary integral method.Conference on the Computation of Electromagnetic Fields, Chicago, IL, USA.

  39. Di Barba, P., Navarra, P., Savini, A. and Sikora, R. (1990). Optimum design of iron-core electromagnets.Conference of the Computation of Electromagnetic Fields, Tokyo, Japan.

  40. Di Barba, P. and Savini, A. (1999). Optimal shape design of an iron-cored electromagnet: A further benchmark problem in magnetostatics.International Journal of Applied Electromagnetics and Mechanics,10, 371–379.

    Google Scholar 

  41. Takahashi, N., Nakata, T. and Uchiyama, N. (1989). Optimal design method of 3-D nonlinear magnetic circuit by using magnetization integral equation method.International Magnetics Conference, washington, DC, USA.

  42. Gottvald, A. (1989). Optimal magnet design for NMR.Conference on the Computation of Electromagnetic Fields (COMPUNAG), Tokyo, Japan.

  43. Iwamura, Y. and Miya, K. (1989). Numerical approach to inverse problem of crack shape recognition based on the electrical potential method (of NDT).Conference on the Computation of Electromagnetic Fields (COMPUMAG), Tokyo, Japan.

  44. Hoole, S., Ratnajeevan, H. and Subramaniam, S. (1992). Inverse problems with boundary elements: Synthesizing a capacitor.COMPUMAG Conference on the Computation of Electromagnetic Fields, Naples, Italy.

  45. Caminhas, W.M., Saldanha, R.R. and Mateus, G.R. (1990). Optimization methods used for determining the geometry of shielding electrodes.IEEE Trans. on Magnetics,26, 642–645.

    Article  Google Scholar 

  46. Tsuboi, M. and Misaki, T. (1988). The optimum design of electrode and insulator contours by nonlinear programming using the surface charge simulation method.IEEE Trans. on Magnetics,24, 35–38.

    Article  Google Scholar 

  47. Sikora, J., Skoczylas, J., Sroka, J. and Wincenciak, S. (1985). The use of the singular value decomposition method in the synthesis of the Neumann's boundary problem.COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,4, 19–27.

    MATH  MathSciNet  Google Scholar 

  48. Liu, J., Freeman, E.M., Yang, X. and Jianni, S. (1990). Optimization of electrode shape using the boundary element method.IEEE Trans. on Magnetics,26, 2184–2186.

    Article  Google Scholar 

  49. Sikora, J. (1989). Minimax approach to the optimal shape designing of the electromagnetic devices.COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,8, 162–175.

    Google Scholar 

  50. Franzone, P.C. (1980). Regularization methods applied to an inverse problem in electrocardiology. InComputing methods in applied sciences and engineering, R. Glowinski and J.L. Lions (eds.), North-Holland, New York, 615–633.

    Google Scholar 

  51. Duan, D.W. and Rahmat-Samii, Y. (1995). Generalized diffraction synthesis technique for high performance reflector antennas.IEEE Trans. on Antennas and Propagation,43, 27–40.

    Article  Google Scholar 

  52. Haupt, R.L. (1994). Thinned arrays using genetic algorithms.IEEE Trans. on Antennas and Propagation,42, 993–999.

    Article  Google Scholar 

  53. Linden, D.S. and Altshuler, E.F. (1996). Automating wire antenna design using genetic algorithms.Microwave Journal,39, 7.

    Google Scholar 

  54. Davis, D., Chan, C. and Hwang, J. (1991). Frequency selective surface design using neural networks inversion based on parameterized representations.Antennas and Propagation Society Symposium London, Ont., Can.,1, 200–203.

    Google Scholar 

  55. Erdemli, Y., Sertel, K., Gilbert, R.A., Wright, D.E. and Volakis, J. (2002). Frequency selective surfaces to enhance performance of broadband reconfigurable arrays.IEEE Trans. on Antennas and Propagation,50, (2), 1716–1724.

    Article  Google Scholar 

  56. Knott, E.F., Schaeffer, J.F. and Tuley, M.T. (1985).Radar Cross Section- its Prediction Measurement and Reduction. Artech House.

  57. Ilavarasan, P., Rothwell, E.J., Chen, K. and Nyquist, D.P. (1995). Natural resonance extraction from multiple data sets using genetic algorithm.IEEE Trans. on Antennas and Propagation,43, 900–904.

    Article  Google Scholar 

  58. Rekanos, I.T. (2002). Inverse scattering in the time domain: An iterative method using an FDTD sensitivity analysis scheme.IEEE Trans. on Magnetics,38, 1117–1120.

    Article  Google Scholar 

  59. Kohn, R.V. and Strang, G. (1986). Optimal design and relaxation of variational problems.Comm. Pure Appl. Math.,39, 1–25 (Part I), 353–377 (Part II).

    Article  MathSciNet  Google Scholar 

  60. Galileo, G. (1638).Discorsi e dimostrazioni matematiche. Leiden.

  61. Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibration.Bull. Am. Math. Society,49, 1–23.

    MATH  MathSciNet  Google Scholar 

  62. Clough, R.W. (1960). The finite element in plane stress analysis.Proc. 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, USA.

  63. Zienkiewicz, O.C. (1971).The Finite Element Method in Engineering Science. McGraw Hill, London.

    MATH  Google Scholar 

  64. Schmit, L.A. (1960). Structural design by systematic synthesis.Proc. 2nd ASCE Conference on Electric Computations, Pittsburgh, PA.

  65. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971). Reduced integration technique in general analysis of plates and shells.Int. J. Numer. Methods Eng.,3, 275–90.

    Article  MATH  Google Scholar 

  66. Venkayya, V.B. (1978). Structural Optimization: A Review and Some Recommendations.Int. J. Numer. Methods Eng.,13, 203–228.

    Article  Google Scholar 

  67. Olhoff, N. and Taylor, J.E. (1983). On Structural Optimization.J. Appl. Mech. Trans. ASME,50, 1139–1151.

    Article  MATH  MathSciNet  Google Scholar 

  68. Haslinger, J. and Neittaanmaki, P. (1988).Finite Element Approximation for Optimal Shape Design: Theory and Applications. Wiley, Chichester.

    MATH  Google Scholar 

  69. Weeber, K., Ratnajeevan, S. and H. Hoole. (1993). Structural design optimization as a technology source for developments in the electromagnetics domain.5th Biennial IEEE Conference on Electromagnetic Field Computation, Claremont, CA, USA.

  70. Michell, A.G.M. (1904). The limits economy in frame structures.Philo. Mag.,8, 589–597.

    Google Scholar 

  71. Rozvany, G.I.N. (1972). Grillages of maximum strength and maximum stiffness.Int. J. Mech. Sci.,14, 651–666.

    Article  Google Scholar 

  72. Rozvany, G.I.N., Zhou, M. and Birker, T. (1992). Generalized shape optimization without homogenization.Structural Optimization,4, 250–252.

    Article  Google Scholar 

  73. Rozvany, G.I.N. (2001). Aims, scope, methods, history and unified terminology of computeraided topology optimization in structural mechanics.Structural and Multidisciplinary Optimization,21, 90–108.

    Article  Google Scholar 

  74. Bendsoe, M.P. and Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Engng.,71, 197–224.

    Article  MathSciNet  Google Scholar 

  75. Diaz, A. and Kikuchi, N. (1992). Solutions to shape and topology eigenvalue optimization problems using a homogenization method.Int. J. Numer. Methods Eng.,35, 1487–1502.

    Article  MATH  MathSciNet  Google Scholar 

  76. Bendsoe, M.P. (1989).Methods for the Optimization of Structural Topology, Shape and Material. Springer, New York.

    Google Scholar 

  77. Haber, R.B., Bendsoe, M.P. and Jog, C.S. (1996). A new approach to variable topology shape design using a constraint on the perimeter.Structural Optimization,11, 1–12.

    Article  Google Scholar 

  78. Allaire, G. and Kohn, R. (1993). Explicit bounds on the elastic energy of a two-phase composite in two space dimensions.Q. Appl. Math.,51, 675–699.

    MATH  MathSciNet  Google Scholar 

  79. Bendsoe, M.P. (1989). Optimal shape design as a material distribution problem.Structural Optimization,1, 193–202.

    Article  Google Scholar 

  80. Yang, R.J. and Chahande, A.I. (1995). Automotive applications of topology optimization.Structural Optimization,9, 245–249.

    Article  Google Scholar 

  81. Bendsoe, M.P. (1995).Optimization of Structural Topology. Shape and Material. Springer, Berlin.

    Google Scholar 

  82. Sankaranarayanan, S., Haftka, R.T. and Kapania, R.K. (1993). Truss topology optimization with simultaneous analysis and design.Structural Dyn. Mat. Conf., Dallas.

  83. Bruns, T.E. and Tortorelli, D.A. (2001). Topology optimization of non-linear elastic structures and compliant mechanisms.Computer Methods in Applied Mechanics and Engineering,190, 3443–3459.

    Article  MATH  Google Scholar 

  84. ansanthasuresh, G.K. (1994). A new design paradigm for micro-electro mechanical systems and investigations on the compliant mechanism synthesis. InMechanical Engineering. University of Michigan, Ann Arbor.

    Google Scholar 

  85. Hetrick, J.A., Kikuchi, N. and Kota, S. (1999). Robustness of compliant mechanism topology optimization formulations.Smart Structures and Materials-Mathematics and Control in Smart Structures, Newport Beach, CA, USA.

  86. Ma, Z.D., Kikuchi, N. and Hagiwara, I. (1993). Structural topology and shape optimization for a frequency response problem.Computational Mechanics,13, 157–174.

    Article  MATH  MathSciNet  Google Scholar 

  87. Bloembaum, B. (1999). The use of structural optimization in automotive design-state of the art and vision.WCSMO-3, Buffalo.

  88. Hassani, H. and Hinton, E. (1998).Homogenization and Structural Topology Optimization Theory, Practice and Software. Springer, Berlin.

    Google Scholar 

  89. Silva, E.C.N., Fonseca, J.S.O. and Kikuchi, N. (1997). Optimal design of piezoelectric microstructures.Comp. Mechanics,19, 397–410.

    Article  MATH  Google Scholar 

  90. Dyck, D.N. and Lowther, D.A. (1996). Automated design of magnetic devices by optimizing material distribution.IEEE Transactions on Magnetics,32, 1188–1193.

    Article  Google Scholar 

  91. Gitosusastro, S., Coulomb, J.I. and Sabonnadiere, J.C. (1988). Performance derivative calculations and optimization process.Third Biennial Conference on Electromagnetic Field Computation, Washington, DC, USA.

  92. Dyck, D.N., Lowther, D.A. and Freeman, E.M. (1994). A method of computing the sensitivity of electromagnetic quantities to changes in materials and sources.IEEE Trans. on Magnetics,30, 3415–3418.

    Article  Google Scholar 

  93. Byun, J.K. and Hahn, S.Y. (1999). Topology optimization of electrical devices using mutual energy and sensitivity.IEEE Trans. on Magnetics,35, 3718–3720.

    Article  Google Scholar 

  94. Wang, S. and Kang, J. (2000). Topology optimization of nonlinear magnetostatics.IEEE Trans. on Magnetics,38, 1029–1032.

    Article  Google Scholar 

  95. Byun, J.K., Lee, J.H., Park, I.H., Lee, H.B., Choi, K. and Hahn, S.Y. (2000). Inverse problem application of topology optimization method with mutual energy concept and design sensitivity.IEEE Trans. on Magnetics,36, 1144–1147.

    Article  Google Scholar 

  96. Koh, C.S. and Hahn, S.Y. (1993). A continuum approach in shape design sensitivity analysis of magnetostatic problems using the boundary element method.IEEE Trans. on Magnetics,23, 1771–1774.

    Google Scholar 

  97. Park, I.H., Lee, H.B., Kwak, I.G. and Hahn, S.Y. (1994). Design sensitivity analysis for steady state eddy current problems by continuum approach.9th Conference on the Computation of Electromagnetic Fields (COMPUMAG'93), Miami, Fl, USA.

  98. Dyck, D.N. (1995). Automating the topological design of magnetic devices. InElectrical Engineering, McGill University.

  99. Lee, H.B. (1995).Computer aided optimal design methods for waveguide structures. Seoul National University.

  100. Dyck, D.N. and Lowther, D.A. (1997). Composite microstructure of permeable material for the optimized material distribution method of automated design.IEEE Trans. on Magnetics,33, 1828–1831.

    Article  Google Scholar 

  101. Choi, S.H.E., Lowther, D.A. and Dyck, D.N. (1997). Determining boundary shapes from the optimized material distribution system.11th International Conference on Computation of Electromagnetic Fields (COMPUMAG), Rio de Janeiro, Brazil.

  102. Dyck, D.N. and Lowther, D.A. (1998). Response surface modelling of magnetic device performance using function value and gradient.International Journal of Applied Electromagnetics and Mechanics,9, 241–248.

    Google Scholar 

  103. Chung, Y.S., Cheon, C. and Hahn, S.Y. (2000). Reconstruction of dielectric cylinders using FDTD and topology optimization technique.IEEE Trans. on Magnetics,34, 956–959.

    Article  Google Scholar 

  104. Chung, Y.S. and Cheon, C. (2001). Optimal shape design of dielectric structure using FDTD and topology optimization.International Microwave Symposium, Phoenix, AZ, USA.

  105. Wang, S. and Kim, C. (2000). A study on the topology optimization of electromagnetic systems.CEFC 2000.

  106. Bossavit, A. (1994). Effective penetration depth in spatially periodic grids: a novel approach to homogenization.International Symposium on Electromagnetic Compatibility, Rome, Italy.

  107. Gong, J., Volakis, J.L., Woo, A.C. and Wang, H.T.G. (1994). Hybrid finite element-boundary integral method for the analysis of cavity-backed antennas of arbitrary shape.IEEE Trans. on Antennas and Propagation,42, 1233–1242.

    Article  Google Scholar 

  108. Jin, J.M. and Volakis, J.L. (1991). A finite-element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures.IEEE Trans. on Attennas and Propagation,39, (1), 97–104.

    Article  Google Scholar 

  109. Lucas, E.W. and Pontana, T.P. (1995). 3-D hybrid finite element/boundary element method for the unified radiation and scattering analysis of general infinite periodic arrays.IEEE Trans. on Antennas and Propagation,43, 145–153.

    Article  Google Scholar 

  110. Volakis, J., Chatterjee, A. and Kempel, L. (1998). Finite Element Method for Electromagnetics: Antennas, Microwave Circuits and Scattering Applications.IEEE Press, New York.

    MATH  Google Scholar 

  111. Sigmund, O. and Petersson, J. (1998). Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima,Structural Optimization,16, 68–75.

    Article  Google Scholar 

  112. Hanson, R. and Hiebert, K. (1981).A sparse linear programming subprogram. Sandia National Laboratories SAND81-0297.

  113. Schittkowski, K., Zillober, C. and Zotemantel, R. (1994). Numerical comparison of nonlinear programming algorithms for structural optimization,Structural Optimization,7, 1–19.

    Article  Google Scholar 

  114. Thomas, H.L., Vanderplaats, G.N. and Shyy, Y.K. (1992). A study of move-limit adjustment strategies in the approximation concepts approach to structural analysis.4th AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, Ohio.

  115. Director, S.W. and Rohrer, R.A. (1972). Introduction to Systems Theory.McGraw-Hill Series in Electronics Systems. McGraw-Hill Book Co, New York.

    MATH  Google Scholar 

  116. Kiziltas, G. (2003). Dielectric material optimization of filters and autennas using SIMP. InMechanical Engineering, The University of Michigan, Ann Arbor.

    Google Scholar 

  117. Zurcher, J.F. and Gardiol, F.E. (1995).Broadband Patch Antennas. Artech House, Inc., Norwood, MA.

    Google Scholar 

  118. Hansen, R.C. (1981). Fundamental limitations on antennas.Proceedings of IEEE,69, 170–182.

    Article  Google Scholar 

  119. Lee, H.F. and Chen, W. (1997).Advances in Microstrip and Printed Antennas. Wiley, New York.

    Google Scholar 

  120. Lech, M., Mitchell, A. and Waterhouse, R. (2000). Optimization of broadband microstrip patch antennas.Asia-Pacific Microwave Conference, Sydney, NSW, Australia.

  121. Koh, B.Y., Halloran, J.W., Knapp, A.M., Volakis, J., Kiziltas, G. and Psychoudakis, D. (2003). Textured dielectric meta-materials for miniaturized antennas: fabrication of dielectric LTCC-polymer by thermoplastic green machining.105th Annual Meeting & Exposition of the American Ceramic Society, Nashville, TN.

  122. Weile, D. and Michielssen, E. (1999). Design of doubly periodic filter and polarizer structures using a hybridized genetic algorithm.Radio Science,34, 51–63.

    Article  Google Scholar 

  123. Wu, T.K. (1995).Frequency Selective Surface and Grid Array. Wiley, New York.

    Google Scholar 

  124. Weile, D.S. and Michielssen, E. (1997). Evolutionary optimization of electromagnetic devices using advanced operators and population structures.Antennas and Propagation Society International Symposium, Montreal, Que., Canada.

  125. Wu, T.K. and Lee, S.W. (1994). Multiband frequency selective surface with multiring patch elements.IEEE Trans. on Antennas and Propagation,42, 1484–1490.

    Article  Google Scholar 

  126. Munk, B.A. (2000).Frequency Selective Surfaces: Theory and Design. Wiley, New York.

    Google Scholar 

  127. Spector, S.J., Astolfi, D.K., Doran, S.P., Lyszczarz, T.M. and Raynolds, J.E. (2001). Infrared Frequency Selective Surfaces Fabricated Using Optical Lithography and Phase Shift Masks.J. Vac. Sci. Technol. B.,19, (6), 2757–2760.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kiziltas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiziltas, G., Kikuchi, N., Volakis, J.L. et al. Topology optimization of dielectric substrates for filters and antennas using SIMP. ARCO 11, 355–388 (2004). https://doi.org/10.1007/BF02736229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736229

Keywords

Navigation