Skip to main content
Log in

Overview and recent advances in natural neighbour galerkin methods

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

In this paper, a survey of the most relevant advances in natural neighbour Galerkin methods is presented. In these methods (also known as natural element methods, NEM), the Sibson and the Laplace (non-Sibsonian) interpolation schemes are used as trial and test functions in a Galerkin procedure. Natural neighbour-based methods have certain unique features among the wide family of so-called meshless methods: a well-defined and robust approximation with no user-defined parameters on non-uniform grids, and the ability to exactly impose essential (Dirichlet) boundary conditions are particularly noteworthy.

A comprehensive review of the method is conducted, including a description of the Sibson and the Laplace interpolants in two- and three-dimensions. Application of the NEM to linear and non-linear problems in solid as well as fluid mechanics is studied. Other issues that are pertinent to the vast majority of meshless methods, such as numerical quadrature, imposing essential boundary conditions, and the handling of secondary variables are also addressed. The paper is concluded with some benchmark computations that demonstrate the accuracy and the key advantages of this numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. R. Aluru (2000). A point collocation method based on reproducing kernel approximations.International Journal for Numerical Methods in Engineering,47, 1083–1121.

    Article  MATH  Google Scholar 

  2. N. R. Aluru and G. Li (2001). Finite cloud method: A true meshless technique based on a fixed reproducing kernel approximation.International Journal for Numerical Methods in Engineering,50(10), 2373–2410.

    Article  MATH  Google Scholar 

  3. Nina Amenta, Marsahll Bern and Manolis Kamvysselis (1998). A new Voronoi-based surface reconstruction algorithm. InSiggraph 98, 415–421.

  4. Nina Amenta, Marshall Bern and David Eppstein (1998). The crust and the beta-skeleton: combinatorial curve reconstruction.Graphical Models and Image Processing,60/2∶2, 125–135.

    Article  Google Scholar 

  5. H. Askes, J. Pamin and R. de Borst (2000). Dispersion analysis and element-free Galerkin solutions of second- and fourth-order gradient-enhanced damage models,International Journal for Numerical Methods in Engineering,49(6), 811–832.

    Article  MATH  Google Scholar 

  6. S. N. Atluri and T. Zhu (1998). A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation.Computer Modeling and Simulation in Engineering,3, 187–196.

    Google Scholar 

  7. S. N. Atluri, H. G. Kim and J. Y. Cho (1999). A critical assesment of the truly meshless local Petrov-Galerkin and local boundary integral equation methods.Computational Mechanics,24, 348–372.

    Article  MATH  Google Scholar 

  8. S. N. Atluri and T. Zhu (2000). New concepts in meshless methods.International Journal for Numerical Methods in Engineering,47, 537–556.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Aurenhammer (1996). Voronoi diagrams—a survey of a fundamental geometric data structure.ACM Transactions on Mathematical Software,23, 469–483.

    Google Scholar 

  10. Various authors (2000). Special issue on machining simulation.International Journal of Forming Proceesses,3(1–2).

  11. I. Babuŝka and J. M. Melenk (1997). The partition of unity method.International Journal for Numerical Methods in Engineering,40, 727–758.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. J. Baker (1994). Triangulations. mesh generation and point placement strategies. In D. A. Caughey and M. M. Hafez, editors,Frontiers of Computational Fluid Dynamics, pages 101–115, New York, John Wiley & Sons.

    Google Scholar 

  13. P. D. Beale and D. J. Srolovitz (1988). Elastic fracture in random materials.Physical Review B,37(10), 5500–5507.

    Article  Google Scholar 

  14. V. V. Belikov, V. D. Ivanov, V. K. Kontorovich, S. A. Korytnik and A. Yu. Semenov (1997). The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points.Computational Mathematics and Mathematical Physics,37(1), 9–15.

    MathSciNet  Google Scholar 

  15. V. V. Belikov and A. Yu. Semenov (1997). New non-Sibsonian interpolation on arbitrary system of points in Euclidean space. In15th IMACS World Congress, Numerical Mathematics, Volume 2, 237–242, Wissen Tech. Verlag, Berlin.

    Google Scholar 

  16. V. V. Belikov and A. Yu. Semenov (2000). Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation.Applied Numerical Mathematics,32(4), 371–387.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl (1996). Meshless methods: An overview and recent developments.Computer Methods in Applied Mechanics and Engineering,139, 3–47.

    Article  MATH  Google Scholar 

  18. T. Belytschko, W. K. Liu and B. Moran (2000).Finite Elements for Nonlinear Continua and Structures, John Wiley and Sons, New York.

    MATH  Google Scholar 

  19. T. Belytschko, Y. Y. Lu and L. Gu (1994). Element-free Galerkin methods.International Journal for Numerical Methods in Engineering,37, 229–256.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.-D. Boissonnat and F. Cazals (2001). Natural neighbour coordinates of points on a surface.Computational Geometry: Theory and Applications,19(2–3), 155–173.

    MATH  MathSciNet  Google Scholar 

  21. J. E. Bolander, Jr and S. Berton (2002). Shrinkage induced cracking in cement composite overlays. In H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner, editorsProceedings of the Fifth World Congress on Computational Mechanics, Vienna, Austria.

  22. J. E. Bolander, Jr and S. Saito (1998). Fracture analyses using spring networks with random geometry.Engineering Fracture Mechanics,61, 569–591.

    Article  Google Scholar 

  23. A. Bowyer (1981). Computing Dirichlet tessellations.Computer J.,24, 162–166.

    Article  MathSciNet  Google Scholar 

  24. J. Braun and M. Sambridge (1995). A numerical method for solving partial differential equations on highly irregular evolving grids,Nature,376, 655–660.

    Article  Google Scholar 

  25. P. Breitkopf, G. Touzot and P. Villon (2000). Double grid diffuse collocation method.Computational Mechanics,25(2/3), 199–206.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Ceretti, L. Filice and F. Micari (2000). Analysis of the chip geometry in orthogonal cutting of mild steel. In4th international ESAFORM conference on Material Forming, Liege, Belgium.

  27. B. Chazelle and L. Palios (1990). Triangulating a non-convex polyhedron.Disc. and Comput. Geometry,5, 505–526.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. S. Chen, C. T. Wu, S. Yoon and Y. You (2001). A stabilized conforming nodal integration for Galerkin meshfree methods.International Journal for Numerical Methods in Engineering,50, 435–466.

    Article  MATH  Google Scholar 

  29. J.-S. Chen, C.-T. Wu, S. Yoon and Y. You (2002). Non-linear version of stabilized conforming nodal integration for galerkin meshfree methods.International Journal for Numerical Methods in Engineering,53(12), 2587–2615.

    Article  MATH  Google Scholar 

  30. F. Chinesta, Ph. Lorong, D. Ryckelinck, G. Coffignal, M. Tourantier, M. A. Martínez, E. Cueto and M. Doblaré (2002). Thermomechanical cutting model discretisation: Eulerian or Lagrangian, mesh or meshless? InEsaform Conference proceedings, Krakow.

  31. N. H. Christ, R. Friedberg and T. D. Lee (1982). Gauge-theory on a random lattice.Nuclear Physics B,210(3), 310–336.

    Article  MathSciNet  Google Scholar 

  32. N. H. Christ, R. Friedberg and T. D. Lee (1982). Random lattice field-theory—general formulationNuclear Physics B,202(1), 89–125.

    Article  MathSciNet  Google Scholar 

  33. N. H. Christ, R. Friedberg and T. D. Lee (1982). Weights of links and plaquettes in a random lattice.Nuclear Physics B,210(3), 337–346.

    Article  MathSciNet  Google Scholar 

  34. I. Christie and C. Hall (1984). The maximum principle for bilinear elements.International Journal for Numerical Methods in Engineering,20, 549–553.

    Article  MATH  MathSciNet  Google Scholar 

  35. Y. A. Chu and B. Moran (1995). A computational model for nucleation of solid-solid phase transformations.Modelling and Simulation in Materials Science and Engineering,3, 455–471.

    Article  Google Scholar 

  36. R. Clough and J. L. Tocher (1965). Finite element stiffness matrices for analysis of plates in bending. InProceedings of the 1st Conference on Matrix Methods in Structural Mechanics, Wright-Patterson AFB.

  37. E. Cueto, B. Calvo and M. Doblaré (2002). Modeling three-dimensional piece-wise homogeneous domains using the α-shape based Natural Element Method.International Journal for Numerical Methods in Engineering,54, 871–897.

    Article  MATH  Google Scholar 

  38. E. Cueto, J. Cegoñino, B. Calvo and M. Doblaré (2003). On the imposition of essential boundary conditions in Natural Neighbour Galerkin methods.Communications in Numerical Methods in Engineering,19 (5), 361–376.

    Article  MATH  Google Scholar 

  39. E. Cueto, M. Doblaré and L. Gracia (2000). Imposing essential boundary conditions in the Natural Element Method by means of density-scaled α-shapes.International Journal for Numerical Methods in Engineering,49(4), 519–546.

    Article  MATH  MathSciNet  Google Scholar 

  40. S. De and K. J. Bathe (2000). The method of finite spheres.Computational Mechanics,25, 329–345.

    Article  MATH  MathSciNet  Google Scholar 

  41. S. De and K. J. Bathe (2001). Towards an efficient meshless computational technique: the method of finite spheres.Engineering Computations,18, 170–192.

    Article  MATH  Google Scholar 

  42. C. de Boor (1987). B-form basics. In G. Farin, editor,Geometric Modeling: Algorithm and New Trends, pages 131–148, SIAM, Philadelphia, PA.

    Google Scholar 

  43. C. de Veubeke (1968). A conforming finite element for plate bending.International Journal for Solids and Structures,4, 95–108.

    Article  MATH  Google Scholar 

  44. J. Dolbow and T. Belytschko (1999). Numerical Integration of the Galerkin Weak Form in Meshfree Methods.Computational Mechanics,23, 219–230.

    Article  MATH  MathSciNet  Google Scholar 

  45. C. A. Duarte and J. T. Oden (1996). AnH-p adaptive method using clouds.Computer Methods in Applied Mechanics and Engineering 139, 237–262.

    Article  MATH  MathSciNet  Google Scholar 

  46. H. Edelsbrunner, D. G. Kirkpatrick and R. Seidel (1983). On the shape of a set of points in the plane.IEEE Transactions on Information Theory,IT-29(4), 551–559.

    Article  MATH  MathSciNet  Google Scholar 

  47. H. Edelsbrunner and E. Mücke (1994). Three dimensional alpha shapes,ACM Transactions on Graphics,13, 43–72.

    Article  MATH  Google Scholar 

  48. G. Farin (1986). Triangular Bernstein-Bézier patches.Computer Aided Geometric Design,3, 83–127.

    Article  MathSciNet  Google Scholar 

  49. G. Farin (1990).Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic Press, New York, second edition.

    MATH  Google Scholar 

  50. G. Farin (1990). Surfaces over Dirichlet tessellations.Computer Aided Geometric Design,7(1–4), 281–292.

    Article  MATH  MathSciNet  Google Scholar 

  51. R. Friedberg and M. Ruiz (1984). Vector algebra on a lattice.Physical Review D,29(12), 2916–2918.

    Article  Google Scholar 

  52. J. M. García, E. Cueto and M. Doblaré (2000). Simulation of bone internal remodeling by means of the alpha-shapes-based natural element method. InECCOMAS Conference, Barcelona.

  53. L. Gavete, J. J. Benito, S. Falcón and A. Ruiz (2000). Penalty functions in constrained variational principles for element free Galerkin method.European Journal of Mechanics. A/ Solids,19, 699–720.

    MATH  MathSciNet  Google Scholar 

  54. S. Ghosh and S. Moorthy (1995). Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite-element method.Computer Methods in Applied Mechanics and Engineering,121 (1–4), 373–409.

    Article  MATH  Google Scholar 

  55. V. Girault (1974). Theory of a finite difference method on irregular networks.SIAM Journal on Numerical Analysis,11(2), 260–282.

    Article  MATH  MathSciNet  Google Scholar 

  56. B. Grünbaum (1967).Convex Polytopes. John Wiley and Sons, New York.

    MATH  Google Scholar 

  57. S. C. Harris, D. Williams and R. Sibson (1999). Scaling random walks on arbitrary sets.Mathematical Proceedings of the Cambridge Philosophical Society,125(3), 535–544.

    Article  MATH  MathSciNet  Google Scholar 

  58. L. R. Hermann (1965). Elasticity equations for incompressible and nearly incompressible materials by a variational theorem.AIAA Journal,163, Nos.1-4, 1896–1900.

    Google Scholar 

  59. H. Hiyoshi and K. Sugihara (1999). Two generalizations of an interpolant based on Voronoi diagrams.International Journal of Shape Modeling,5(2), 219–231.

    Article  Google Scholar 

  60. H Hiyoshi and K. Sugihara (2000). Voronoi-based interpolation with higher continuity. InProceedings of the 16th Annual ACM Symposium on Computational Geometry, pages 242–250.

  61. H. Hiyoshi and K. Sugihara (2002). Improving continuity of Voronoi-based interpolation over Delaunay spheres.Computational Geometry,22, 167–183.

    Article  MATH  MathSciNet  Google Scholar 

  62. A. Huerta and S. Fernández-Méndez (2000). Enrichment and coupling of the finite element and meshless methods.International Journal for Numerical Methods in Engineering,48, 1615–1636.

    Article  MATH  Google Scholar 

  63. T.J.R. Hughes (1987).The Finite Element Method. Prentice-Hall, New York.

    MATH  Google Scholar 

  64. B. Irons (1969). A conforming quartic triangular element for plate bending.International Journal for Numerical Methods in Engineering,1, 29–45.

    Article  MATH  Google Scholar 

  65. B. Irons and A. Razzaque (1972). Experience with the patch test for convergence of finite elements. In A. K. Aziz, editor,The mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, New York. Academic Press.

    Google Scholar 

  66. A. Jagota and S. J. Bennison (1994). Spring-network and finite-element models for elasticity and fracture. In K. K. Bardhan, B. K. Chakrabarti, and A. Hansen, editors,Nonlinearity and Breakdown in Soft Condensed Matter. (Springer Lecture Notes in Physics 437), pages 186–201, Springer, Berlin.

    Google Scholar 

  67. P. S. Jensen (1972). Finite difference techniques for variable grids.Computers and Structures,2, 17–29.

    Article  Google Scholar 

  68. N. L. Jones, S. J. Owens and E. C. Perry (1995). Plume characterization with natural neighbor interpolation. InProceedings GEOENVIRONMENT 2000, Geotechnical Engineering and Environmental Engineering Divisions/ASCE, pages 331–345, New York, N.Y.

  69. W. P. Jones and K. R. Menzies (2000). Analysis of the cell-centred finite volume method for the diffusion equation.Journal of Computational Physics,165, 45–68.

    Article  MATH  MathSciNet  Google Scholar 

  70. H.-O. Kreiss, T. A. Manteuffel, B. Swartz, B. Wendroff and A. B. White, Jr. (1986). Supraconvergent schemes on irregular grids.Mathematics of Computation,47(176), 537–554.

    Article  MATH  MathSciNet  Google Scholar 

  71. Y. Krongauz (1996).Application of Meshless Methods to Solid Mechanics. PhD thesis, Northwestern University, Evanston, IL.

    Google Scholar 

  72. P. Krysl and T. Belytschko (1996). Analysis of thin plates by the element-free Galerkin method.Computational Mechanics,17, 26–35.

    Article  MathSciNet  Google Scholar 

  73. P. Lancaster and K. Salkauskas (1981). Surfaces generated by moving least squares methods.Mathematics of Computation,37, 141–158.

    Article  MATH  MathSciNet  Google Scholar 

  74. J. B. Lasserre (1983). An analytical expression and an algorithm for the volume of a convex polyhedron in ℝn.Journal of Optimization Theory and Applications,39(3), 363–377.

    Article  MATH  MathSciNet  Google Scholar 

  75. C. L. Lawson (1977). Software forC 1 surface interpolation. InJ. R. Rice (Ed.)Mathematical Software III, Vol. 3. Academic Press, N.Y.

    Google Scholar 

  76. R. W. Lewis and K. Ravindran (2000). Finite element simulation of metal casting.International Journal for Numerical Methods in Engineering,47, 29–59.

    Article  MATH  Google Scholar 

  77. S. Li and W. K. Liu (2002). Meshfree and particle methods and their applications.Applied Mechanics Review,55(1), 1–34.

    Article  Google Scholar 

  78. T. Liszka and J. Orkisz (1980). The finite difference method at arbitrary irregular grids and its application in applied mechanics.Computers and Structures,11, 83–950.

    Article  MATH  MathSciNet  Google Scholar 

  79. W. K. Liu, S. Jun and Y. F. Zhang (1995). Reproducing kernel particle methods.International Journal for Numerical Methods in Engineering,20, 1081–1106.

    Article  MATH  MathSciNet  Google Scholar 

  80. Charles T. Loop and Tony D. DeRose (1989). A multisided generalization of Bézier surfaces.ACM Transactions on Graphics,8(3), 204–234.

    Article  MATH  Google Scholar 

  81. T. A. Manteuffel and A. B. White, Jr. (1986). The numerical solution of second-order boundary value problems on nonuniform meshes.Mathematics of Computation,47(176), 511–535.

    Article  MATH  MathSciNet  Google Scholar 

  82. M. A. Martínez, E. Cueto, M. Doblaré and F. Chinesta (2001). A meshless simulation of injection processes involving short fibers molten composites.International Journal of Forming Processes,4(3–4), 217–236.

    Google Scholar 

  83. M. A. Martínez, E. Cueto, M. Doblaré and F. Chinesta (2003). Fixed mesh and meshfree techniques in the numerical simulation of injection processes involving short fiber suspensions.Journal for Non Newtonian Fluid Mechanics,115, 51–78.

    Article  MATH  Google Scholar 

  84. T. Marusich and M. Ortiz (1995). Modeling and simulation of high-speed machinningInternational Journal for Numerical Methods in Engineering,38(21), 3675–3694.

    Article  MATH  Google Scholar 

  85. J. M. Melenk and I. Babuška (1996). The partition of unity finite element method: Basic theory and applications.Computer Methods in Applied Mechanics and Engineering,139, 289–314.

    Article  MATH  MathSciNet  Google Scholar 

  86. I. D. Mishev (1998). Finite volume methods on Voronoi meshes.Numerical Methods for Partial Differential Equations,14, 193–212.

    Article  MATH  MathSciNet  Google Scholar 

  87. J. J. Monaghan (1988). An introduction to SPH.Computer Physics Communications,48, 89–96.

    Article  MATH  Google Scholar 

  88. C. V. Mow, S. C. Kuei, W. M. Lai and C. G. Armstrong (1980). Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments.Journal of Biomechanical Engineering,102, 73–84.

    Article  Google Scholar 

  89. Y. X. Mukherjee and S. Mukherjee (1997). The boundary node method for potential problems.International Journal for Numerical Methods in Engineering,40(5), 797–815.

    Article  MATH  Google Scholar 

  90. T. N. Narasimhan and P. A. Witherspoon (1976). An integrated finite difference method for analyzing fluid flow in porous media.Water Resources Research,12(1), 57–64.

    Google Scholar 

  91. B. Nayroles, G. Touzot and P. Villon (1992). Generalizing the finite element method: Diffuse approximation and diffuse elements.Computational Mechanics,10, 307–318.

    Article  MATH  Google Scholar 

  92. E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco (1996). A stabilised finite point method for analysis of fluid mechanics problems.Computer Methods in Applied Mechanics and Engineering,139, 315–346.

    Article  MATH  MathSciNet  Google Scholar 

  93. S. J. Owens (1992). An implementation of natural neighbor interpolation in three dimensions. Master’s thesis, Brigham Young University.

  94. N. B. Petrovskaya (2001). Modification of a finite volume scheme for Laplace’s equation.SIAM Journal on Scientific Computing,23(3), 891–909.

    Article  MATH  MathSciNet  Google Scholar 

  95. P. Piper (1993). Properties of local coordinates based on Dirichlet tessellations. In G. Farin, H. Hagen, and H. Noltemeier, editors,Geometric Modelling, volume 8, pages 227–239, Wien New York. Springer-Verlag.

    Google Scholar 

  96. F. Preparata and M. Shamos (1985).Computational Geometry: An Introduction. Springer-Verlag, New York.

    Google Scholar 

  97. J. Rupert and R. Seidel (1992). On the difficulty of tetrahedralizing three-dimensional nonconvex polyhedra.Disc. and Comput. Geometry,7, 227–253.

    Article  Google Scholar 

  98. M. Sambridge, J. Braun and H. McQueen (1995). Geophysical parameterization and interpolation of irregular data using natural neighbors.Geophysical Journal International,122, 837–857.

    Article  Google Scholar 

  99. M. S. Sambridge, J. Braun and H. McQueen (1996). Computational methods for performing natural neighbor interpolation in two and three dimensions. In R. L. May and A. K. Easton, editors,Proceedings of the Seventh Biennial Conference on Computational Techniques and Applications (CTAC95), pages 685–692.

  100. E. Schönhardt (1928). Über die zerlegung von dreieckspolyedern in tetraeder.Math. Annalen,98.

  101. D. Shepard (1968). A two-dimensional interpolation function for irregularly spaced points. InACM National Conferenee, pages 517–524.

  102. J. R. Shewchuk (2000). Sweep Algorithms for constructing higher-dimensionnal Constrained Delaunay Triangulations. InProceedings of the Sixteenth Annual Symposium on Computational Geometry, Hong Kong. Association for computing Machinery.

  103. R. Sibson (1980). A vector identity for the Dirichlet tesselation.Mathematical Proceedings of the Cambridge Philosophical Society,87, 151–155.

    MATH  MathSciNet  Google Scholar 

  104. R. Sibson (1981). A brief description of natural neighbor interpolation. In V. Barnett, editor,Interpreting Multivariate Data, pages 21–36, Chichester. John Wiley.

    Google Scholar 

  105. K. Sugihara (1999). Surface interpolation based on new local coordinates.Computer-Aided Design,31, 51–58.

    Article  MATH  Google Scholar 

  106. N. Sukumar (1998).The Natural Element Method in Solid Mechanics, Ph.D. thesis, Theoretical and Applied Mechanics, Northwestern University, Evanston, IL, U.S.A., June.

    Google Scholar 

  107. N. Sukumar (2001). Sibson and non-Sibsonian interpolants for elliptic partial differential equations. In K. J. Bathe, editor,Proceedings of the first MIT Conference on Fluid and Solid Mechanics, volume 2, pages 1665–1667, Amsterdam, The Netherlands, Elsevier Press.

    Google Scholar 

  108. N. Sukumar (2002). Voronoi cell finite difference method for the diffusion operator on arbitrary unstructured grids.International Journal for Numerical Methods in Engineering, accepted for publication.

  109. N. Sukumar (2003). Voronoi cell finite difference method for the diffusion operator on arbitrary unstructured grids.International Journal for Numerical Methods in Engineering,57(1), 1–34.

    Article  MATH  MathSciNet  Google Scholar 

  110. N. Sukumar, B. Moran and T. Belytschko, (1998). The natural element method in solid mechanics.International Journal for Numerical Methods in Engineering,43(5), 839–887.

    Article  MATH  MathSciNet  Google Scholar 

  111. N. Sukumar, B. Moran, A. Yu. Semenov and V. V. Belikov (2001). Natural neighbor Galerkin methods.International Journal for Numerical Methods in Engineering,50(1), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  112. D. Sulsky, Z. Chen and H. L. Schreyer (1994). A particle method for history-dependent materials.Computer Methods in Applied Mechanics and Engineering,118, 179–186.

    Article  MATH  MathSciNet  Google Scholar 

  113. B. Szabo and I. Babuška (1991).Finite Element Analysis. John Wiley & Sons.

  114. M. Teichmann and M. Capps (1998). Surface reconstruction with anisotropic density-scaled alpha shapes. InProceedings of the 1998 IEEE Visualization Conference.

  115. J. W. Thomas (1995).Numerical Partial Differential Equations: Finite Difference Methods. Springer-Verlag, New York.

    MATH  Google Scholar 

  116. A. N. Tikhonov and A. A. Samarskii (1962). Homogeneous difference schemes on non-uniform nets.U.S.S.R. Comput. Math. and Math. Phys.,2, 927–953.

    Article  MathSciNet  Google Scholar 

  117. S. Timoshenko and J. N. Goodier (1972).Teoría de la Elasticidad. Editorial Urmo.

  118. L. Traversoni (1994). Natural neighbor finite elements. InInternational Conference on Hydraulic Engineering Software, Hydrosoft Proceedings, volume 2, pages 291–297. Computational Mechanics Publications.

  119. D. F. Watson (1981). Computing then-dimensional Delaunary tessellation with application to Voronoi polytopes.The Computer Journal,24(2), 167–172.

    Article  MathSciNet  Google Scholar 

  120. D. F. Watson (1992).Contouring: A Guide to the Analysis and Display of Spatial Data. Pergamon Press, Oxford.

    Google Scholar 

  121. D. F. Watson (1994).nngridr: An implementation of natural neighbor interpolation. David Watson.

  122. D. F. Watson and G. M. Philip (1987). Neighborhood-based interpolation.Geobyte,2(2), 12–16.

    Google Scholar 

  123. A. Weiser and M. F. Wheeler (1998). On convergence of block-centered finite differences for elliptic problems.SIAM Journal on Numerical Analysis,25(2), 351–375.

    Article  MathSciNet  Google Scholar 

  124. J. Yoo, B. Moran and J.-S. Chen (2003). Nodal natural neighbor methods.International Journal for Numerical Methods in Engineering, in press.

  125. O. C. Zienkiewicz, C. Humpheson and W. Lewis (1977). A unified approach to soil mechanics problems (including plasticity and viscoplasticity).Finite Elements in Geomechanics. G. Gudehus Ed., pages 151–178.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cueto, E., Sukumar, N., Calvo, B. et al. Overview and recent advances in natural neighbour galerkin methods. ARCO 10, 307–384 (2003). https://doi.org/10.1007/BF02736253

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736253

Keywords

Navigation