Skip to main content
Log in

The general Gauss-Markov model with possibly singular dispersion matrix

  • Survey Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Linear models with possibly singular dispersion (variance-covariance) matrix of the vector of disturbances have been considered in the literature since the late sixties. In this paper we give a survey of important results and consequences without a claim to completeness. Proofs are given for the results in Sections 2 to 5.

  1. 1

    Notation

  2. 2

    The General Gauss-Markov Model

  3. 3

    Best Linear Unbiased Estimation

  4. 4

    Quadratic Unbiased Estimation

  5. 5

    Testing a Linear Hypothesis

  6. 6

    Further Aspects of Linear Estimation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baksalary, J.K. and Markiewicz, A. (1989). A matrix inequality and admissibility of linear estimators with respect to the mean square error matrix criterion.Linear Algebra and Its Applications, 112, pp. 9–18.

    Article  MATH  MathSciNet  Google Scholar 

  2. Baksalary, J.K. and Markiewicz, A. (1990). Admissible linear estimators of an arbitrary vector of parametric functions in the general Gauss-Markov model,Journal of Statistical Planning and Inference, 26, pp. 161–171.

    Article  MATH  MathSciNet  Google Scholar 

  3. Baksalary, J.K. and Puntanen, S. (1989). Weighted-least squares estimation in the general Gauss-Markov model. In:Statistical Data Analysis and Inference (Dodge, Y., ed.), North-Holland, Amsterdam, pp. 355–368.

    Google Scholar 

  4. Baksalary, J.K., Rao, C.R. and Markiewicz, A. (1992). A study of the influence of the ‘natural restrictions’ on estimation problems in the singular Gauss-Markov model,Journal of Statistical Planning and Inference, 31, pp. 335–351.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhimasankaram, P. and Sengupta, D. (1996). The linear zero functions approach to linear models,Sankhyā, Ser. B, 58, pp. 338–351.

    MATH  MathSciNet  Google Scholar 

  6. Christensen, R. (1987).Plane Answers to Complex Questions, The Theory of Linear Models, Springer, New-York.

    MATH  Google Scholar 

  7. Christensen, R. (1990). Comment on Puntanen and Styan (1989),The American Statistician, 44, pp. 192/193.

    Google Scholar 

  8. Drygas, H. (1970).The Coordinate-Free Approach to Gauss-Markov Estimation, Springer, Berlin.

    MATH  Google Scholar 

  9. Drygas, H. (1983). Sufficiency and completeness in the general Gauss-Markov model,Sankhyā, Ser. A, 45, pp. 88–98.

    MATH  MathSciNet  Google Scholar 

  10. Chipman, J.S. (1964). On least squares with insufficient observations,Journal of the American Statistical Association, 59, pp. 1078–1111.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chipman, J.S. (1976). Estimation and aggregation in econometrics: an application of the theory of generalized inverses. In:Generalized Inverses and Applications (Nashed, M.Z., ed.), Academic Press, pp. 549–769.

  12. Feuerverger, A. and Fraser, D.A.S. (1980). Categorial information and the singular linear model,Canadian Journal of Statistics, 8, pp. 41–45.

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldman, A.J. and Zelen, M. (1964). Weak generalized inverses and minimum variance linear unbiased estimation,Journal of Research of the National Bureau of Standards Sec. B, 68, pp. 151–172.

    MATH  MathSciNet  Google Scholar 

  14. Groß, J. (1996). Comment on range invariance of matrix products.Linear and Multilinear Algebra, 41, pp. 157–160.

    Article  MATH  MathSciNet  Google Scholar 

  15. Groß, J. (1997). Special generalized inverse matrices connected with the theory of unified least squares,Linear Algebra and Its Applications, 264, pp. 325–327.

    Article  MATH  MathSciNet  Google Scholar 

  16. Harville, D.A. (1990). Comment on Puntanen and Styan (1989),The American Statistician, 44, pp. 192/193.

    Google Scholar 

  17. Kala, R. (1981). Projectors and linear estimation in general linear models,Communications in Statistics, Theory and Methods, 10, pp. 849–873.

    Article  MathSciNet  Google Scholar 

  18. Marsaglia, G. and G.P.H. Styan (1974). Equalities and inequalities for ranks of matrices,Linear and Multilinear Algebra, 2, pp. 269–292.

    Article  MathSciNet  Google Scholar 

  19. Mitra, S.K. (1973). Unified least squares approach to linear estimation in a general Gauss-Markov model,SIAM Journal of Applied Mathematics, 25, pp. 671–680.

    Article  Google Scholar 

  20. Mitra, S.K. and Rao, C.R. (1968). Some results in estimation and test of linear hypothesis under the Gauss-Markoff model,Sankhyā, Ser A, 30, pp. 281–290.

    MATH  MathSciNet  Google Scholar 

  21. Nordström, K. (1984). On a decomposition of the singular Gauss-Markov model. In:Linear Statistical Inference (Calinski, T. and Klonecki, W., eds.), Springer, Berlin, pp. 231–245.

    Google Scholar 

  22. Pringle, R.M. and Rayner, A.A. (1971).Generalized Inverse Matrices with Applications to Statistics, Griffin, London.

    MATH  Google Scholar 

  23. Puntanen, S. and Styan, G.P.H. (1989). The equality of the ordinary least squares estimator and the best linear unbiased estimator with discussion,The American Statistician, 43, pp. 153–164.

    Article  MathSciNet  Google Scholar 

  24. Puntanen, S. and Scott, A.J. (1996). Some further remarks on the singular model,Linear Algebra and Its Applications, 237/238, pp. 313–327.

    Article  MathSciNet  Google Scholar 

  25. Puntanen, S., Styan, G.P.H. and Werner, H.J. (2000). Two matrix-based proofs that the linear estimatorG yis the best linear unbiased estimator,Journal of Statistical Planning and Inference, 88, pp. 173–179.

    Article  MATH  MathSciNet  Google Scholar 

  26. Rao, C.R. (1968). A note on a previous lemma in the theory of least squares and some further results,Sankhyā, Ser. A., 30, pp. 259–266.

    MATH  Google Scholar 

  27. Rao, C.R. (1971). Unified theory of linear estimation,Sankhyā, Ser. A, 33, pp. 371–394. Corrigenda (1972).Sankhyā, Ser. A, 34, pp. 194, 477.

    MATH  Google Scholar 

  28. Rao, C.R. (1973). Representations of best linear estimators in the Gauss-Markoff model with a singular dispersion matrix,Journal on Multivariate Analysis 3, pp. 276–292.

    Article  Google Scholar 

  29. Rao, C.R. (1985). A unified approach to inference from linear models. In:Proceedings of the First International Tampere Seminar on Linear Statistical Models and Their Applications (Pukkila, T. and Puntanen, S., eds.), University of Tampere, Finland, pp. 19–36.

    Google Scholar 

  30. Rao, C.R. and S.K. Mitra (1971).Generalized Inverse of Matrices and Its Applications, Wiley, New York.

    MATH  Google Scholar 

  31. Schönfeld, P. (1971). Best linear minimum bias estimation in linear regression,Econometrica, 39, pp. 531–544.

    Article  MATH  MathSciNet  Google Scholar 

  32. Searle, S.R. (1994). Extending some results and proofs for the singular linear model,Linear Algebra and Its Applications, 210, pp. 139–151.

    Article  MATH  MathSciNet  Google Scholar 

  33. Seely, J. and Zyskind, G. (1971). Linear spaces and minimum variance unbiased estimation,The Annals of Mathematical Statistics, 42, pp. 691–703.

    Article  MathSciNet  Google Scholar 

  34. Theil, H. (1971).Principles of Econometrics, Wiley, New York.

    MATH  Google Scholar 

  35. Zyskind, G. (1967). On canonical forms, non-negative covariance matrices and best and simple least squares linear estimators in linear models,The Annals of Mathematical Statistics, 38, pp. 1092–1109.

    Article  MathSciNet  Google Scholar 

  36. Zyskind, G. and Martin, F.B. (1969). On best linear unbiased estimation and a general Gauss-Markov theorem in linear models with arbitrary nonnegative covariance structure,SIAM Journal of Applied Mathematics, 17, pp. 1190–1202.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groß, J. The general Gauss-Markov model with possibly singular dispersion matrix. Statistical Papers 45, 311–336 (2004). https://doi.org/10.1007/BF02777575

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02777575

Keywords

Navigation