Skip to main content
Log in

Nekton of new seagrass habitats colonizing a subsided salt marsh in Galveston Bay, Texas

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Subsidence and erosion of intertidal salt marsh at Galveston Island State Park, Texas, created new areas of subtidal habitat that were colonized by seagrasses begining in 1999. We quantified and compared habitat characteristics and nekton densities in monospecific beds of stargrassHalophila engelmanni and shoalgrassHalodule wrightii as well as adjacent nonvegetated substrates. We collected 10 replicates per habitat type during April, July, October, and December 2001. Most habitat characteristics varied with season. Water temperature, salinity, and dissolved oxygen were similar among habitat types. Turbidity and depth were greatest inH. engelmanni beds and least inH. wrightii beds.H. engelmanni exhibited shorter leaves and higher shoot density and biomass core−1 thanH. wrightii. Densities of almost all dominant species of nekton (fishes and decapods) were seasonally variable, all were higher in seagrass habitats than in nonvegetated habitats, and most were higher in one seagrass species than the other. Naked gobyGobiosoma bosc, code gobyGobiosoma robustum, bigclaw snapping shrimpAlpheus heterochaelis, and blue crabCallinectes sapidus, were most abundant inH. engelmanni. Brown shrimpFarfantepenaeus aztecus, brackish grass shrimpPalaemonetes intermedius, and daggerblade grass shrimpPalaemonetes pugio were most abundant inH. wrightii. PinfishLagodon rhomboides and pink shrimFarfantepenaeus duorarum were equally abundant in either seagrass. Most dominant nekton varied in size by month, but only two (L. rhomboides andC. sapidus) exhibited habitat-related differences in size. Nekton densities in these new seagrass habitats equaled or exceeded densities associated with historical and current intertidal smooth cordgrassSpartina alterniflora marsh. Continued seagrass expansion and persistence should ensure ecosystem productivity in spite of habitat change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Attrill, M. J., J. A. Strong, andA. A. Rowden. 2000. Are macroinvertebrate communities influenced by seagrass structural complexity?Ecography 23:114–121.

    Article  Google Scholar 

  • Baltz, D. M., J. W. Fleeger, C. F. Rakocinski, andJ. F. McCall. 1998. Food, density, and microhabitat: Factors affecting growth and recruitment potential of juvenile saltmarsh fishes.Environmental Biology of Fishes 53:89–103.

    Article  Google Scholar 

  • Buckley, S. 2000. Radar interferometry measurement of land subsidence. Ph.D. Dissertation, The University of Texas at Austin, Austin, Texas.

    Google Scholar 

  • Burke, L., Y. Kura, K. Kassem, C. Ravenga, M. Spalding, andD. McAllister. 2001. Pilot Analysis of Global Ecosystems: Coastal Ecosystems. World Resources Institute, Washington, D.C.

    Google Scholar 

  • Center for Space Research. 2001. Radar interferometry measurement of land subsidence in Houston, Texas. The University of Texas at Austin, Center for Space Research, Austin, Texas (<|http://www.csr.utexas.edu/rs/research/insar/houston_desc.html|<, as of September 2005)

    Google Scholar 

  • Clark, R. D., J. D. Christensen, M. E. Monaco, P. A. Caldwell, G. A. Matthews, andT. J. Minello. 2004. A habitat-use model to determine essential fish habitat for juvenile brown shrimp (Farfantepenaeus aztecus) in Galveston Bay, Texas.Fishery Bulletin 102:264–277.

    Google Scholar 

  • Coplin, L. S. andD. Galloway. 2001. Houston-Galveston, Texas: Managing coastal subsidence, p. 35–48.In D. Galloway, R. Jones, and S. E. Ingebritsen (eds.) Land Subsidence in the United States. U.S. Geological Survey, Circular 1182, Denver, Colorado.

    Google Scholar 

  • Dunton, K. H. 1994. Seasonal growth and biomass of the subtropical seagrassHalodule wrightii in relation to continuous measurements of underwater irradiance.Marine Biology 120: 479–489.

    Article  Google Scholar 

  • Gilmore, G. and L. Trent. 1974. Abundance of benthic macroinvertebrates in natural and altered estuarine areas. U.S. Department of Commerce, National Oceanic and Atmospheric Administration Technical Report NMFS SSRF-677, Seattle, Washington.

  • Haas, H. L., K. A. Rose, B. Fry, T. J. Minello, andL. P. Rozas. 2004. Brown shrimp on the edge: Linking habitat to survival using an individual-based simultion model.Ecological Applications 14:1232–1247.

    Article  Google Scholar 

  • Heck, Jr.K. L., C. G. Hays, andR. J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows.Marine Ecology Progress Series 253:123–136.

    Article  Google Scholar 

  • Hensley, R. A. and B. Fuls. 1997. Trends in relative abundance and size of selected finfishes and shellfishes along the Texas coast: November 1975–December 1996. Texas Parks and Wildlife Department, Management Data Series Number 159, Austin, Texas.

  • Hovel, K. A., M. S. Fonseca, D. L. Meyer, W. J. Kenworthy, andP. E. Whitfield. 2002. Effects of seagrass landscape, structural complexity and hydrodynamic regime on macrofaunal densities in North Carolina seagrass beds.Marine Ecology Progress Series 243:11–24.

    Article  Google Scholar 

  • Huh, S.-H. 1984. Seasonal variations in populations of small fishes concentrated in shoalgrass and turtlegrass meadows.Journal of the Oceanology Society of Korea 19:44–55.

    Google Scholar 

  • Hyndes, G. A., A. J. Kendrick, L. D. MacArthur, andE. Stewart. 2003. Differences in the species- and size-composition of fish assemblages in three distinct seagrass habitats with differing plant and meadow structure.Marine Biology 142:1195–1206.

    Google Scholar 

  • Irlandi, E. A. andM. K. Crawford. 1997. Habitat linkages: The effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish.Oecologia 110:222–230.

    Article  Google Scholar 

  • Knowles, L. L. andS. S. Bell. 1998. The influence of habitat structure in faunal-habitat associations in a Tampa Bay seagrass system, Florida.Bulletin of Marine Science 62:781–794.

    Google Scholar 

  • Kushlan, J. A. 1981. Sampling characteristics of enclosure fish traps.Transactions of the American Fisheries Society 110:557–562.

    Article  Google Scholar 

  • Lewis, III,F. G. 1984. Distribution of macrobenthic crustaceans associated withThalassia, Halodule, and bare sand substrata.Marine Ecology Progress Series 19:101–113.

    Article  Google Scholar 

  • Matheson, Jr.,R. E., D. K. Camp, S. M. Sogard, andK. A. Bjorgo. 1999. Changes in seagrass-associated fish and crustacean communities on Florida Bay mud banks: The effects of recent ecosystem changes?Estuaries 22:534–551.

    Article  Google Scholar 

  • Minello, T. J. 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat, p. 43–75.In L. R. Benaka (ed.) Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society Symposium 22, Bethesda, Maryland.

  • Minello, T. J., K. W. Able, M. P. Weinstein, andC. G. Hays. 2003. Salt marshes as nurseries for nekton: Testing hypotheses on density, growth and survival through meta-analysis.Marine Ecology Progress Series 246:39–59.

    Article  Google Scholar 

  • Pardieck, R. A., R. J. Orth, R. J. Diaz, andR. N. Lipcius. 1999. Ontogenetic changes in habitat use by postlarvae and young juveniles of the blue crab.Marine Ecology Progress Series 186:227–238.

    Article  Google Scholar 

  • Pulich, W. M. andW. A. White. 1991. Decline, of submerged vegetation in the Galveston Bay system: Chronology and relationship to physical processes.Journal of Coastal Research 7:1125–1138.

    Google Scholar 

  • Rozas, L. P. andT. J. Minello. 1998. Nekton use of salt marsh. seagrass, and nonvegetated habitats in a south Texas (USA) estuary.Bulletin of Marine Science 63:481–501.

    Google Scholar 

  • Scott, E. 1998. Utilization of submerged aquatic vegetation habitats by fishes and decapods in the Galveston Bay ecosystem, Texas. M.S. Thesis, Texas A&M University, College Station, Texas.

    Google Scholar 

  • Sheridan, P. F. 1992. Comparative habitat utilization by estuarine macrofauna within the mangrove ecosystem of Rookery Bay, Florida.Bulletin of Marine Science 50:21–39.

    Google Scholar 

  • Sheridan, P. 2004. Recovery of floral and faunal communities after placement of dredged material on seagrasses in Laguna Madre, Texas.Estuarine Coastal and Shelf Science 59:441–458.

    Article  Google Scholar 

  • Sheridan, P., C. Henderson, andG. McMahan. 2003. Fauna of natural seagrass and transplantedHalodule wrightii (shoalgrass) beds in Galveston Bay, Texas.Restoration Ecology 11:139–154.

    Article  Google Scholar 

  • Sheridan, P., G. McMahan, G. Conley, A. Williams, andG. Thayer. 1997. Nekton use of macrophyte patches following mortality of turtlegrass,Thalassia testudinum, in shallow waters of Florida Bay (Florida, USA).Bulletin of Marine Science 61:801–820.

    Google Scholar 

  • Sheridan, P. F. andT. J. Minello. 2003. Nekton use of different habitat types in seagrass beds of lower Laguna Madre, Texas.Bulletin of Marine Science 72:37–61.

    Google Scholar 

  • Short, F. T. andS. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses.Environmental Conservation 23:17–27.

    Article  Google Scholar 

  • Sokal, R. R. andF. J. Rohlf. 1981. Biometry, 2nd edition. W. H. Freeman and Co., San Francisco, California.

    Google Scholar 

  • Spalding, M. D., E. Blasco, andC. D. Field. 1997. World Mangrove Atlas. International Society for Mangrove Ecosystems, Okinawa, Japan.

    Google Scholar 

  • Spitzer, P. M., J. Mattila, andK. L. Heck. 2000. The effects of vegetation density on the relative growth rates of juvenile pinfish,Lagodon rhomboides (Linneaus), in Big Laggon, Florida.Journal of Experimental Marine Biology and Ecology 244:67–86.

    Article  Google Scholar 

  • Stunz, G. W., T. J. Minello, andP. S. Levin. 2002a. A comparison of early juvenile red drum densities among various habitat types in Galveston Bay, Texas.Estuaries 25:76–85.

    Article  Google Scholar 

  • Stunz, G. W., T. J. Minello, andP. S. Levin. 2002b. Growth of newly-settled red drum Sciaenops ocellatus in different estuarine habitat types.Marine Ecology Progress Series 238:227–236.

    Article  Google Scholar 

  • Szedmayer, S. T. andK. W. Able. 1996. Patterns of seasonal availability and habitat use by fishes and decapod crustaceans in a southern New Jersey estuary.Estuaries 19:697–709.

    Article  Google Scholar 

  • Tolan, J. M., S. A. Holt, andC. P. Onuf. 1997. Distribution and community structure of ichthyoplankton in Laguna Madre seagrass meadows: Potential impact of seagrass species change.Estuaries 20:450–464.

    Article  Google Scholar 

  • Underwood, A. J. 1997. Experiments in Ecology. Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press. Cambridge, U.K.

    Google Scholar 

  • Underwood, A. J., M. G. Chapman, andT. P. Crowe. 2004. Identifying and understanding ecological preferences for habitat or prey.Journal of Experimental Marine Biology and Ecology 300:161–187.

    Article  Google Scholar 

  • U.S. Census Bureau. 2000. Census 2000. (http://www.census.gov, as of September 2005).

  • White, W. A., T. R. Calnan, R. A. Morton, R. S. Kimble, T. G. Littleton, J. H. McGowen, H. S. Nance, andK. E. Schmedes. 1985. Submerged lands of Texas, Galveston-Houston area: Sediments, geochemistry, benthic macroinvertebrates, and associated wetlands. The University of Texas at Austin, Bureau of Economic Geology, Austin, Texas.

    Google Scholar 

  • White, W. A., T. A. Tremblay, E. G. Werumund, Jr., and L. R. Handley. 1993. Trends and status of wetland and aquatic habitats in the Galveston Bay system. Galveston Bay National Estuary Program Publication GBNEP-31, Houston, Texas.

  • Whitledge, T. E. and S. M. Ray. 1989. Galveston Bay: Issues, Resources, Status, and Management. NOAA Estuary-of-the-Month Seminar Series No. 13 and Texas A&M University Sea Grant Publication TAMU-SG-88-115, College Station, Texas.

  • Zimmerman, R. J. andT. J. Minello. 1984. Densities ofPenaeus aztecus, Penaeus setiferus, and other natant macrofauna in a Texas salt marsh.Estuaries 7:421–433.

    Article  Google Scholar 

  • Zimmerman, R. J., T. J. Minello, E. F. Klima, andJ. M. Nance. 1991. Effects of accelerated sea-level rise on coastal secondary production, p. 110–124.In H. S. Bolton and O. T. Magoon (eds.), Coastal Wetlands, Coastal Zone '91 Conference. American Society of Civil Engineers, New York.

    Google Scholar 

  • Zupo, V. andW. G. Nelson. 1999. Factors influencing the association patterns ofHippolyte zostericola andPalaemonetes intermedius (Decapoda: Natantia) with seagrasses of the Indian River Lagoon, Florida,Marine Biology 134:181–190.

    Article  Google Scholar 

Sources of Unpublished Materials

  • Glass, P. personal communication. U.S. Fish and Wildlife Service, 17629 El Camino Real, Suite 211, Houston, Texas 77058.

  • Minello, T. personal communication. National Marine Fisheries Service, Southeast Fisheries Science Center, 4700 Avenue U, Galveston, Texas 77551.

  • Roach, W. personal communication. U.S. Fish and Wildlife Service, 17629 El Camino Real, Suite 211, Houston, Texas 77058.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sheridan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, S.P., Sheridan, P. Nekton of new seagrass habitats colonizing a subsided salt marsh in Galveston Bay, Texas. Estuaries and Coasts: J ERF 29, 286–296 (2006). https://doi.org/10.1007/BF02781997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02781997

Keywords

Navigation