Skip to main content
Log in

Bioavailability of selenium accumulated by selenite-reducing bacteria

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The bioavailability of selenium (Se) was determined in bacterial strains that reduce selenite to red elemental Se (Seo). A laboratory strain ofBacillus subtilis and a bacterial rod isolated from soil in the vicinity of the Kesterson Reservoir, San Joaquin Valley, CA, (Microbacterium arborescens) were cultured in the presence of 1 mM sodium selenite (Na2SeO3). After harvest, the washed, lyophilizedB. subtilis andM. arborescens samples contained 2.62 and 4.23% total Se, respectively, which was shown to consist, within error, entirely of Seo. These preparations were fed to chicks as supplements to a low-Se, vitamin E-free diet. Three experiments showed that the Se in both bacteria had bioavailabilities of approx 2% that of selenite. A fourth experiment revealed that gray Seo had a bioavailability of 2% of selenite, but that the bioavailability of red Seo depended on the way it was prepared (by reduction of selenite). When glutathione was the reductant, bioavailability resembled that of gray Seo and bacterial Se; when ascorbate was the reductant, bioavailability was twice that level (3–4%). These findings suggest that aerobic bacteria such asB. subtilis andM. arborescens may be useful for the bioremediation of Se-contaminated sites, i.e., by converting selenite to a form of Se with very low bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. McCarty, T. Chasteen, M. Marshall, R. Fall, and R. Bachofen, Phototrophic bacteria produce volatile methylated sulfur and selenium compounds,FEMS Microbiol. Lett. 112, 93–97 (1993).

    Article  CAS  Google Scholar 

  2. D. R. Lovley, Dissimilatory metal reduction,Ann. Rev. Microbiol. 67, 263–290 (1993).

    Article  Google Scholar 

  3. A. O. Summers and S. Silver, Microbial transformation of metals,Ann. Rev. Microbiol. 32, 637–672 (1978).

    Article  CAS  Google Scholar 

  4. B. B. Buchanan, T. Leighton, J. Liu, B. C. Yee, S. Jovanovich, A. Yee, W.-S. Yang, S. Ekune, and B. Chapman, Bioremediation of selenium using the bacteriumBacillus subtilis. Abstracts of Fifth International Symposium on Selenium in Biology and Medicine, Vanderbilt Univ. School of Med., Nashville, TN, p. 30 (1992).

  5. B. B. Buchanan, J. J. Bucher, D. E. Carlson, N. M. Edelstein, E. A. Hudson, N. Kaltsoyannis, T. Leighton, W. Lukens, H. Nitsche, T. Reich, K. Roberts, D. K. Shuh, P. Torretto, J. Woicik, W.-S. Yang, A. Yee and B. C. Yee, A XANES and EXAFS investigation of the speciation of selenite following bacterial metabolization,Inorg. Chem. In press.

  6. C. Garbisu, S. Gonzalez, W.-H. Yang, B. C. Yee, D. E. Carlson, A. Yee, N. R. Smith, R. Otero, B. B. Buchanan, and T. Leighton, Physiological mechanisms regulating the conversion of selenite to elemental selenium byBacillus subtilis, BioFactors. In press.

  7. K. Schwarz and C. M. Foltz, Factor 3 activity of selenium compounds,J. Biol. Chem. 233, 245–254 (1958).

    PubMed  CAS  Google Scholar 

  8. A. H. Cantor, M. L. Scott, and T. Noguchi, Biologic availability of selenium in feedstuffs and selenium compounds for prevention of exudative diathesis in chicks,J. Nutr. 105, 96–107 (1975).

    CAS  Google Scholar 

  9. M. J. Axley and T. C. Stadtman, Selenium metabolism and selenium-dependent enzymes in microorganisms,Ann. Rev. Nutr. 9, 127–137 (1989).

    Article  CAS  Google Scholar 

  10. T. Schrader and J. R. Andreesen, Purification and characterization of protein-P(C), a component of glycine reductase fromEubacterium acidaminophilum, Eur. J. Biochem. 206, 1–13 (1992).

    Article  Google Scholar 

  11. J. B. Jones and T. C. Stadtman, Selenium-dependent and selenium-independent formate dehydrogenases ofMethanoccoccus vannielii. Separation of the two forms and characterization of the purified selenium-independent form,J. Biol. Chem. 256, 656 (1981).

    PubMed  CAS  Google Scholar 

  12. T. C. Stadtman, Specific occurrence of selenium in certain enzymes and amino acid transfer ribonucleic acids,Phosphorus Sulfur 24, 199–211 (1985).

    Article  Google Scholar 

  13. G. F. Combs, Jr., The selenium needs of laying and breeding hens,Poultry Sci. 58, 871–884 (1979).

    CAS  Google Scholar 

  14. G. F. Combs, Jr., Influence of ethoxyquin on the utilization of selenium by the chick,Poultry Sci. 57, 210–222 (1978).

    CAS  Google Scholar 

  15. B. R. Bochner, Sleuthing out bacterial identities,Nature 339, 157, 158 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. L. M. McShane, L. C. Clark, G. F. Combs, Jr., and B. W. Turnbull, Reporting the accuracy of biochemical measurements for epidemiologic and nutrition studies,Am. J. Clin. Nutr. 53, 1354–1360 (1991).

    PubMed  CAS  Google Scholar 

  17. O. E. Olson, I. S. Palmer, and E. E. Cary, Modification of the official method for selenium in plants,J. Assoc. Off. Anal. Chem. 58, 117–121 (1975).

    CAS  Google Scholar 

  18. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,J. Lab. Clin. Med. 70, 158–169 (1967).

    PubMed  CAS  Google Scholar 

  19. R. A. Lawrence, and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver,Biochem. Biophys. Res. Commun. 71, 952–958 (1976).

    Article  PubMed  CAS  Google Scholar 

  20. G. F. Combs, Jr. and S. B. Combs, The biologic availability of selenium in foods and feeds, inThe Role of Selenium in Nutrition, Academic, New York, pp. 127–178 (1986).

    Google Scholar 

  21. G. F. Combs, Jr. and S. B. Combs, Selenium in foods and feeds, inThe Role of Selenium in Nutrition, Academic, New York, pp. 41–126 (1986).

    Google Scholar 

  22. G. F. Combs, Jr. and G. M. Pesti, Influence of ascorbic acid on the selenium nutrition of the chick,J. Nutr. 106, 958–966 (1976).

    PubMed  CAS  Google Scholar 

  23. M. S. Cupp, G. F. Combs, Jr., and R. A. Corradino, Ascorbate interacts with selenium to increase glutathione peroxidase activity in selenium-deficient chick duodena cultured in vitro,Biol. Trace Elem. Res. 20, 87–94 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combs, G.F., Garbisu, C., Yee, B.C. et al. Bioavailability of selenium accumulated by selenite-reducing bacteria. Biol Trace Elem Res 52, 209–225 (1996). https://doi.org/10.1007/BF02789163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789163

Index Entries

Navigation