Skip to main content
Log in

Ergodic averaging sequences

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We consider generalizations of the pointwise and mean ergodic theorems to ergodic theorems averaging along different subsequences of the integers or real numbers. The Birkhoff and Von Neumann ergodic theorems give conclusions about convergence of average measurements of systems when the measurements are made at integer times. We consider the case when the measurements are made at timesa(n) or ([a(n)]) where the functiona(x) is taken from a class of functions called a Hardy field, and we also assume that |a(x)| goes to infinity more slowly than some positive power ofx. A special, well-known Hardy field is Hardy’s class of logarithmico-exponential functions.

The main theme of the paper is to point out that for a functiona(x) as described above, a complete characterization of the ergodic averaging behavior of the sequence ([a(n)]) is possible in terms of the distance ofa(x) from (certain) polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Boshernitzan,An extension of Hardy’s class of ‘orders of infinity’, J. Analyse Math.39 (1981), 235–255.

    MATH  MathSciNet  Google Scholar 

  2. M. Boshernitzan,New ‘orders of infinity’, J. Analyse Math.41 (1981), 130–167.

    MathSciNet  Google Scholar 

  3. M. Boshernitzan,Uniform distribution and Hardy fields, J. Analyse Math.62 (1994), 225–240.

    MATH  MathSciNet  Google Scholar 

  4. M. Boshernitzan, R. L. Jones and M. Wierdl,Integer and fractional parts of good averging sequences in ergodic theory, inConvergence in Ergodic Theory and Probability (Columbus, OH, 1993) (V. Bergelson, P. March and J. Rosenblatt, eds.), de Gruyter, Berlin, 1996, pp. 117–132.

    Google Scholar 

  5. M. Boshernitzan and M. Wierdl,Ergodic theorems along sequences and Hardy fields, Proc. Nat. Acad. Sci. U.S.A.93 (1996), no. 16, 8205–8207.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Bourgain,Point-wise ergodic theorems for arithmetic sets (appendix: The return time theorem), Publ. Math. I.H.E.S.69 (1989), 5–45.

    MATH  MathSciNet  Google Scholar 

  7. S. D. Cohen,The distribution of polynomials over finite fields, Acta Arith.17 (1970), 255–271.

    MATH  MathSciNet  Google Scholar 

  8. J. M. Deshouillers,Problème de Waring avec exposants non entiers, Bull. Soc. Math. France101 (1973), 285–295.

    MATH  MathSciNet  Google Scholar 

  9. G. H. Hardy,Orders of Infinity, 2nd edn., Cambridge Univ. Press, Cambridge, 1924.

    MATH  Google Scholar 

  10. R. Jones and M. Wierdl,Covergence and divergences of ergodic averages, Ergodic Theory Dynam. Systems14 (1994), 515–535.

    MATH  MathSciNet  Google Scholar 

  11. A. Karatsuba,Basic Analytic Number Theory, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  12. M. Lacey,On an inequality due to Bourgain, Illinois J. Math.41 (1997), 231–236.

    MATH  MathSciNet  Google Scholar 

  13. E. Lesigne,On the sequence of integer parts of a good sequence for the ergodic theorem, Comment. Math. Univ. Carolin.36 (1995), 737–743.

    MATH  MathSciNet  Google Scholar 

  14. H. Niederreiter,On a paper of Blum, Eisenberg, and Hahn concerning ergodic theory and the distribution of sequences in the Bohr group, Acta Sci. Math. (Szeged)37 (1975), 103–108.

    MATH  MathSciNet  Google Scholar 

  15. H. Niederreiter and R. Lidl,Finite Fields, Cambridge Univ. Press, Cambridge, 1983.

    MATH  Google Scholar 

  16. J. Rosenblatt and M. Wierdl,Cointwise ergodic theorems via harmonic analysis, inErgodic Theory and its Connections with Harmonic Analysis (K. Petersen and I. Salama, eds.), London Mathematical Society Lecture Note Series, no. 205, Cambridge Univ. Press, 1995, pp. 5–151.

  17. S. Sawyer,Maximal inequalities of weak type, Ann. of Math.84 (1966), 157–174.

    Article  MathSciNet  Google Scholar 

  18. J.-P. Thouvenot,La convergence presque sûre des moyennes ergodiques suivant certaines soussuites d'entiers (d'après Jean Bourgain), Astérisque (1990), no. 189-190, Exp. No. 719, 133–153, Séminaire Bourbaki, Vol. 1989/90.

  19. V. Bergelson, M. Boshernitzan and J. Bourgain,Some results on non-linear recurrence, J. Analyse Math.62 (1994), 29–46.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. G. Van der Corput,Neue zahlentheoretische Abschatzungen II, Math. Z.29 (1929), 397–426.

    Article  MathSciNet  Google Scholar 

  21. R. C. Vaughan,The Hardy-Littlewood Method, Cambridge Univ. Press, Cambridge, 1981.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Boshernitzan.

Additional information

This research was supported by grants from the NSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boshernitzan, M., Kolesnik, G., Quas, A. et al. Ergodic averaging sequences. J. Anal. Math. 95, 63–103 (2005). https://doi.org/10.1007/BF02791497

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02791497

Keywords

Navigation