Skip to main content
Log in

Application of PIXE analysis to the study of the regional distribution of trace elements in normal human brain

  • Applications of Trace Metal Analysis to Basic Problems in Neurobiology
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A particle-induced X-ray emission (PIXE) analysis method is presented, which allows measurement of eight elements (i.e., K, Ca, Mn, Fe, Cu, Zn, Se, and Rb) in human brain samples of only a few mg dry weight. The precision and accuracy of the method were investigated by analyzing animal brain matter with both PIXE and instrumental neutron activation analysis (INAA). The method was applied to measure the 8 elements in 46 different regions of 3 human brains. The sections analyzed originated from either the left or the right cerebral hemisphere, brain stem, and cerebellum. For one of the brains, sections were also analyzed from 26 corresponding regions of both hemispheres. For all elements, similar concentrations were found in the corresponding areas of the left and right sides of the brain. The concentrations (in μg/g dry weight) of the elements K, Fe, Cu, Zn, Se, and Rb were consistently higher in cortical structures than in white matter. Deep nuclei and brain stem, which have a mixed composition, showed intermediate values for K, Zn, Se, and Rb. A hierarchical cluster analysis indicated that the various brain regions clustered into two large groups, one comprising gray and mixed matter regions and the other, white and mixed matter brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Harrison, M. G. Netsky, and M. D. Brown,Clin. Chim. Acta 21, 55 (1968).

    Article  PubMed  CAS  Google Scholar 

  2. J. Smeyers-Verbeke, E. Defrise-Gussenhoven, G. Ebinger, A. Löwenthal, and D. L. Massart,Clin. Chim. Acta 51, 309 (1974).

    Article  PubMed  CAS  Google Scholar 

  3. A. Höck, U. Demmel, H. Schicha, K. Kasperek, and L. E. Feinendegen,Brain 98, 49 (1975).

    Article  PubMed  Google Scholar 

  4. N. A. Larsen, H. Pakkenberg, E. Damsgaard, and K. Heydorn,J. Neurol. Sci. 42, 407 (1979).

    Article  PubMed  CAS  Google Scholar 

  5. N. A. Larsen, H. Pakkenberg, E. Damsgaard, K. Heydorn, and S. Wold,J. Neurol. Sci. 51, 437 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. U. Demmel, A. Höck, L. E. Feinendegen, and P. Sebek,Sci. Tot. Environ. 38, 69 (1984).

    Article  CAS  Google Scholar 

  7. E. Bonilla, E. Salazar, J. J. Villasmil, and R. Villalobos,Neurochem. Res. 7, 221, (1982).

    Article  PubMed  CAS  Google Scholar 

  8. E. Bonilla, E. Salazar, J. J. Villasmil, R. Villalobos, M. Gonzalez, and J. O. Davila,Neurochem. Res. 9, 1543 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. W. Maenhaut, L. De Reu, H. A. Van Rinsvelt, J. Cafmeyer, and P. Van Espen,Nucl. Instr. Meth. 168, 557 (1980).

    Article  CAS  Google Scholar 

  10. W. Maenhaut, L. De Reu, U. Tomza, and J. Versieck,Anal. Chim. Acta 136, 301 (1982).

    Article  CAS  Google Scholar 

  11. W. Maenhaut, R. Cornelis, J. Cafmeyer, and L. Mees,Bull. Soc. Chim. Belg. 90, 1115 (1981).

    Article  CAS  Google Scholar 

  12. P. Van Espen, H. Nullens, and W. Maenhaut, inMicrobeam Analysis 1979, D. E. Newbury, ed., San Francisco, San Francisco, CA, 1979, pp. 265–267.

    Google Scholar 

  13. G. V. Iyengar and K. Kasperek,J. Radioanal. Chem. 39, 301 (1977).

    Article  CAS  Google Scholar 

  14. W. Maenhaut, L. De Reu, and J. Vandenhaute,Nucl. Instr. Meth. B3, 135 (1984).

    Google Scholar 

  15. P. Schutyser, W. Maenhaut, and R. Dams,Anal. Chim. Acta 100, 75 (1978).

    Article  CAS  Google Scholar 

  16. P. M. Mather,Computational Methods of Multivariate Analysis in Physical Geography, Wiley, London, 1976.

    Google Scholar 

  17. D. L. Massart and L. Kaufmann,The Interpretation of Analytical Chemical Data by the use of Cluster Analysis, Wiley, New York, 1983.

    Google Scholar 

  18. P. Van Espen,Anal. Chim. Acta 165, 31 (1984).

    Article  Google Scholar 

  19. A. C. Greiner, S. C. Chan, and G. A. Nicolson,Clin. Chim. Acta 61, 335 (1975).

    Article  PubMed  CAS  Google Scholar 

  20. A. C. Greiner, S. C. Chan, and G. A. Nicolson,Clin. Chim. Acta 64, 211 (1975).

    Article  PubMed  CAS  Google Scholar 

  21. P. J. Warren, C. J. Earl, and H. S. Thompson,Brain 83, 709 (1960).

    Article  PubMed  CAS  Google Scholar 

  22. M. Nathan, A. Höck, U. Demmel, K. Kasperek, and L. E. Feinendegen,J. Radioanal. Chem. 70, 209 (1982).

    CAS  Google Scholar 

  23. E. I. Hamilton, M. J. Minski, and J. J. Cleary,Sci. Tot Environ. 1, 341 (1972/1973).

    Article  Google Scholar 

  24. W. D. Ehmann, W. R. Markesbery, T. I. M. Hossain, M. Alauddin, and D. T. Goodin,J. Radioanal. Chem. 70, 57 (1982).

    CAS  Google Scholar 

  25. W. R. Markesbery, W. D. Ehmann, M. Alauddin, and T. I. M. Hossain,Neurobiol. Aging 5, 19 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duflou, H., Maenhaut, W. & De Reuck, J. Application of PIXE analysis to the study of the regional distribution of trace elements in normal human brain. Biol Trace Elem Res 13, 1–17 (1987). https://doi.org/10.1007/BF02796617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02796617

Index Entries

Navigation