Skip to main content
Log in

A biome classification of China based on plant functional types and the BIOME3 model

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

A biome classification for China was established based on plant functional types (PFTs) using the BIOME3 model to include 16 biomes. In the eastern part of China, the PFTs of trees determine mostly the physiognomy of landscape. Biomes range from boreal deciduous coniferous forest/woodland, boreal mixed forest/woodland, temperate mixed forest, temperate broad-leaved deciduous forest, warm-temperate broad-leaved evergreen/mixed forest, warm-temperate/cool-temperate evergreen coniferous forest, xeric woodland/scrub, to tropical seasonal and rain forest, and tropical deciduous forest from north to south. In the northern and western part of China, grass is the dominant PFT. From northeast to west and southwest the biomes range from moist savannas, tall grassland, short grassland, dry savannas, arid shrubland/steppe, desert, to alpine tundra/ice/polar desert. Comparisons between the classification introduced here and the four classifications which were established over the past two decades, i.e. the vegetation classification, the vegetation division, the physical ecoregion, and the initial biome classification have showed that the different aims of biome classifications have resulted in different biome schemes each with its own unique characteristics and disadvantages for global change study. The new biome classification relies not only on climatic variables, but also on soil factor, vegetation functional variables, ecophysiological parameters and competition among the PFTs. It is a comprehensive classification that using multivariables better expresses the vegetation distribution and can be compared with world biome classifications. It can be easily used in the response study of Chinese biomes to global change, regionally and globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J.M. (1996): Towards a better vegetation scheme for global mapping and monitoring.Global Ecol. Biogeogr. Lett. 5: 3–6.

    Article  Google Scholar 

  • Bailey R.G. (1989):Ecoregions of the continents. Department of Agriculture, Forest Service, Washington.

    Google Scholar 

  • Beerling D.J., Woodward F.I., Lomas M. &Jenkins A.J. (1997): Testing the responses of a dynamic global vegetation model to environmental change: a comparison of observations and predictions.Global Ecol. Biogeogr. Lett. 6: 439–450.

    Article  Google Scholar 

  • Box E.O. (1995): Factors determining distributions of tree species and plant functional types.Vegetatio 121: 101–116.

    Article  Google Scholar 

  • Box E.O. (1996): Plant functional types and climate at the global scale.J. Veg. Sci. 7: 309–320.

    Article  Google Scholar 

  • Chinese Central Meteorological Office (1984):Climatological data of China. China Meteorology Press, Beijing.

    Google Scholar 

  • Editorial Committee for Vegetation of China (1980):Vegetation of China. Science Press, Beijing.

    Google Scholar 

  • Foley J.A., Prentice I.C., Ramankutty N., Levis S., Pollard D., Sitch S. &Haxeltine A. (1996): An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics.Global Biogeochem. Cycles 10: 603–628.

    Article  CAS  Google Scholar 

  • Haxeltine A. &Prentice I.C. (1996): BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types.Global Biogeochem. Cycles 10: 693–709.

    Article  CAS  Google Scholar 

  • Haxeltine A., Prentice I.C. &Creswell I.D. (1996): A coupled carbon and water flux model to predict vegetation structure.J. Veg. Sci. 7: 651–666.

    Article  Google Scholar 

  • Holdridge L R. (1967):Life zone ecology. Tropical Science Center, San Jose.

    Google Scholar 

  • Hou X.Y., Sun S.Z., Zhang J.W., He M.G., Wang Y.F., Kong D.Z. &Wang S.Q. (1982):Vegetation map of the People’s Republic of China. Map Press of China, Beijing.

    Google Scholar 

  • Hou X.Y. (1988): Physical ecoregion of China and mega-agricultural development.Bull. Chin. Acad. Sci. 1: 28–37, 2: 137–152.

    Google Scholar 

  • Houghton J.T., Meira Filho L.G., Callender B.A., Harris N., Kattenberg A. &Maskell K. (1996):Climate change 1995: the science of climate change. Cambridge University Press, New York.

    Google Scholar 

  • Matthews E. (1983): Global vegetation and land use: new high-resolution data bases for climate studies.J. Climate Appl. Meteorol. 22: 474–487.

    Article  Google Scholar 

  • Melillo J., Prentice I.C., Schulze E.-D., Farquhar G. &Sala O. (1996): Terrestrial biotic responses to environmental change and feedbacks to climate. In:Houghton J.T., Meira Filho L.G., Callender B.A., Harris N., Kattenberg A. &Maskell K. (eds.),Climate change 1995: the science of climate change, Cambridge University Press, New York, pp. 445–482.

    Google Scholar 

  • Neilson R.P. (1995): A model for predicting continental scale vegetation distribution and water balance.Ecol. Appl. 5: 362–386.

    Article  Google Scholar 

  • Ni J. (2000): A simulation of biomes on the Tibetan Plateau and their responses to global climate change.Mountain Res. Developm. 20: 80–89.

    Article  Google Scholar 

  • Ni J., Chen Z.X., Dong M., Chen X.D. &Zhang X.S. (1998): An ecogeographical regionalization for biodiversity in China.Acta Bot. Sin. 40: 370–382.

    Google Scholar 

  • Ni J., Sykes M.T., Prentice I.C. &Cramer W. (2000): Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3.Global Ecol. Biogeogr. 9: 463–479.

    Article  Google Scholar 

  • Olson J.S., Watts J.A. &Allison L.J. (1983):Carbon in live vegetation of major world ecosystems. Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

  • Prentice I.C., Cramer W., Harrison S.P., Leemans R., Monserud R.A. &Solomon A.M. (1992): A global biome model based on plant physiology and dominance, soil properties and climate.J. Biogeogr. 19: 117–134.

    Article  Google Scholar 

  • Prentice I.C. &Webb III T. (1998): BIOME 6000: reconstructing global mid-Holocene vegetation patterns from palaeoecological records.J. Biogeogr. 25: 997–1005.

    Article  Google Scholar 

  • Schultz J. (1995):The ecozones of the world: the ecological divisions of the geosphere. Springer-Verlag, Berlin.

    Google Scholar 

  • Smith T.M., Shugart H.H. &Woodward F.I. (1997):Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stolz J.F., Botkin D.B. &Dastoor M.N. (1989): The integral biosphere. In:Rambler M.B., Margulis I. &Fester R. (eds.),Global ecology: towards a science of the biosphere, Academic Press, San Diego, pp. 36–37.

    Google Scholar 

  • Sykes M.T., Prentice I.C. &Laarif F. (1999): Quantifying the impact of global climate change on potential natural vegetation.Climatic Change 41: 37–52.

    Article  Google Scholar 

  • Udvardy M.D.F. (1975):A classification of the biogeographical provinces of the world. IUCN Occasional Paper No. 18, IUCN, Morges.

    Google Scholar 

  • Woodward F.I. &Williams B.G. (1987): Climate and distribution at global and local scales.Vegetatio 69: 189–197.

    Article  Google Scholar 

  • Woodward F.I. &Rochefort L. (1991): Sensitivity analysis of vegetation diversity to environmental change.Global Ecol. Biogeogr. Lett. 1: 7–23.

    Article  Google Scholar 

  • Woodward F.I., Smith T.M. &Emanuel W.R. (1995): A global land primary productivity and phytogeography model.Global Biogeochem. Cycles 9: 471–490.

    Article  CAS  Google Scholar 

  • Woodward F.I. &Cramer W. (1996): Plant functional types and climatic change: introduction.J. Veg. Sci. 7: 306–308.

    Article  Google Scholar 

  • Xiong Y. &Li Q.K. (1987):Soils of China. Ed. 2. Science Press, Beijing.

    Google Scholar 

  • Zhang X.S. &Yang D.A. (1990): The radiative dryness index and potential productivity of vegetation in China.J. Environm. Sci. (China) 2: 95–109.

    Google Scholar 

  • Zhang X.S. &Yang D.A. (1993): A study on climate-vegetation interaction in China: the ecological model for global change.Coenoses 8: 105–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J. A biome classification of China based on plant functional types and the BIOME3 model. Folia Geobot 36, 113–129 (2001). https://doi.org/10.1007/BF02803157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803157

Keywords

Navigation