Skip to main content
Log in

The calcareous riddle: Why are there so many calciphilous species in the Central European flora?

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The pool of the Central European flora consists of a majority of vascular plant taxa that are restricted to very base rich and calcareous soils. Ellenberg indicator values for Germany indicate that this floristic pattern is one of the potentially most powerful determinants of the richness of modern temperate plant communities. Considering the example of the forest flora, which, as the putative natural core of the species pool, exhibits the same skew, it is shown that neither the frequency of suitable soil types nor other correlated ecological factors can explain this striking pattern. Also, the ramification of higher taxa offers no indication of higher evolution speeds in calciphilous plants. As an alternative, it is hypothesized that Pleistocene range contractions have caused the extinction of more acidophilous than calciphilous species, because acid soils were much rarer when refugial areas were at their minimum. If this is correct, one of the most significant ecological patterns in the contemporary distribution of plant diversity must be regarded as a result of ecological drift imposed by a historical bottleneck.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1997):Deutscher Waldbodenbericht 1996 Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987–1993 (BZE). Vol. 1 & 2. Bundesministerium für Ernährung, Landwirtschaft und Forsten (BMELF), Bonn.

  • Bohn U., Gollub G., Hettwer C., Neuhäuslová Z., Schlüter H. &Weber H. (2003):Map of the natural vegetation of Europe. Bundesamt für Naturschutz, Bonn.

    Google Scholar 

  • Borhidi A. (1995): Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora.Acta Bot. Hung. 39: 97–181.

    Google Scholar 

  • Ellenberg H. (1996):Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ed. 5. Ulmer, Stuttgart.

    Google Scholar 

  • Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W. &Paulißen D. (1991): Zeigerwerte von Pflanzen in Mitteleuropa.Scripta Geobot. 18: 1–248.

    Google Scholar 

  • Eriksson O. (1993): The species-pool hypothesis and plant community diversity.Oikos 68: 371–374.

    Article  Google Scholar 

  • Falkengren-Grerup U., Brunet J., Quist M. E. &Tyler G. (1995): Is the Ca: Al ratio superior to pH, Ca or Al concentrations of soils in accounting for the distribution of plants in deciduous forest?Pl. & Soil 177: 21–31.

    Article  CAS  Google Scholar 

  • Fiedler H. J. &Hunger W. (1970):Geologische Grundlagen der Bodenkunde und Standortslehre. Th. Steinkopf, Dresden.

    Google Scholar 

  • Fischer A. (1999): Floristical changes in Central European forest ecosystems during the past decades as an expression of changing site conditions. In:Karjaleinen T., Spiecker H. & Lavoussinie O. (eds.), Causes and consequences of accelerating tree growth in Europe,EFI-Proceedings 27: 53–64.

    Google Scholar 

  • Gönnert T. (1989): Ökologische Bedingungen verschiedener Laubwaldgesellschaften des Nordwestdeutschen Tieflandes.Diss. Bot. 136.

  • Gough L., Shaver G. R., Carroll J., Royer D. L. &Laundre J. A. (2000): Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH.J. Ecol. 88: 54–66.

    Article  Google Scholar 

  • Grime J. P. (1979):Plant strategies and vegetation processes. John Wiley, Chichester.

    Google Scholar 

  • Grubb P. J. (1987): Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphere. In:Gee J.H.R. &Giller P.S. (eds.),Organization of communities, Blackwell, Oxford, pp. 99–118.

    Google Scholar 

  • Hakes W. (1994): On the predictive power of numerical and Braun-Blanquet classification: an example from beechwoods.J. Veg. Sci. 5: 153–160.

    Article  Google Scholar 

  • Iversen J. (1958): The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa. In:Hedberg O. (ed.), Systematics of today,Uppsala Univ. Årsskr. 110: 210–215.

    Google Scholar 

  • Hubbell S. P. (2001):The unified neutral theory of biodiversity and biogeography. Monographs in Population Biology 32, Princeton University Press, Princeton.

    Google Scholar 

  • Kerner von Marilaun A. (1896):The natural history of plants 2. Hult, New York.

    Google Scholar 

  • Kinzel H. (1982):Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart.

    Google Scholar 

  • Landolt E. (1977): Ökologische Zeigerwerte zur Schweizer Flora.Veröff. Geobot. Inst. ETH Stiftung Rübel Zürich 64: 1–208.

    Google Scholar 

  • Larcher W. (1994):Ökophysiologie der Pflanzen. Ed 4. Ulmer, Stuttgart.

    Google Scholar 

  • Oberdorfer E. (1992):Süddeutsche Pflanzengesellschaften. Teil IV: Wälder und Gebüsche. Ed. 2. G. Fischer, Stuttgart.

    Google Scholar 

  • Pärtel M. (2002): Local plant diversity patterns and evolutionary history at the regional scale.Ecology 83: 2361–2366.

    Google Scholar 

  • Pärtel M., Zobel M., Zobel K. &van der Maarel E. (1996): The species pool and its relation to species richness evidence from Estonian plant communities.Oikos 75: 111–117.

    Article  Google Scholar 

  • Peet R.K. &Christensen N.L. (1988): Changes in species diversity during secondary forest succession on the North Carolina piedmont. In:During H.J., Werger M.J.A. &Willems H.J. (eds.),Diversity and pattern in plant communities, Junk, The Hague, pp. 233–246.

    Google Scholar 

  • Polomski J. &Huhn N. (1998):Wurzelsysteme. Haupt, Bern.

    Google Scholar 

  • Ricklefs R. (1987): Community diversity: relative roles of local and regional processes.Science 235: 167–171.

    Article  PubMed  Google Scholar 

  • Rosenzweig M.L. (1995):Species diversity in space and time. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schimper A.F.W. (1903):Plant-geography upon a physiological basis. Clarendon, Oxford.

    Google Scholar 

  • Tyler G. (1999): Plant distribution and soil-plant interactions on shallow soils. In:Rydin H., Snoeijs P. &Diekmann M. (eds.),Swedish plant geography, Opulus Press, Uppsala, pp. 21–32.

    Google Scholar 

  • Ulrich B. &Meyer H. (1987):Chemischer Zustand der Waldböden Deutschlands zwischen 1920 und 1960, Ursachen und Tendenzen seiner Veränderung. Berichte des Forschungszentrums Waldökosysteme/Waldsterben, Reihe B 6, Göttingen, Forschungszentrum Waldökosysteme, Göttingen.

    Google Scholar 

  • Watts W.A. (1988): Europe. In:Huntley B. &Webb T. (eds.),Vegetation history, Kluwer, Dordrecht, pp. 155–192.

    Google Scholar 

  • Whittaker R.H. (1960): Vegetation of the Siskiyou Mountains, Oregon and California.Ecol. Monogr. 30: 279–338.

    Article  Google Scholar 

  • Zobel M., van der Maarel E. &Dupré C. (1998): Species pool: the concept, its determination and significance for community restoration.Appl. Veg. Sci. 1: 55–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Ewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewald, J. The calcareous riddle: Why are there so many calciphilous species in the Central European flora?. Folia Geobot 38, 357–366 (2003). https://doi.org/10.1007/BF02803244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803244

Keywords

Nomenclature

Navigation