Skip to main content
Log in

Conditional use of mangrove habitats by fishes: Depth as a cue to avoid predators

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The flooded intertidal zone in coastal estuarine systems (e.g., mangroves and salt marshes) is thought to provide nekton with both food and refuge from predators. The primary aim of this study was to identify the relative contribution of root structure, shading, and leaf litter, all characteristic features of mangrove forests, in shaping the intertidal distribution of tidally migrating fishes. We manipulated the structure and shade in 9-m2 sample plots in a shallow, mangrove-fringed, intertidal embayment in Tampa Bay, Florida. In a separate field experiment, we compared fish association with standing mangrove leaf litter and bare sand substrate. Shade and leaf litter had a water depthdependent effect on the distribution of the fish; no effect was associated with the presence of mangrove roots. In shallow water (<45 cm), fish were captured primarily in plots without shade, but this distribution shifted progressively with increasing water depth, so that when water was greater than 55 cm most fish were captured in shaded plots. Fish were more frequently associated with, and feeding in, plots covered in leaf litter than bare sand plots. This relationship did not persist at depths greater than 15 cm because fish abundance declined gratly. Tethering experiments usingCyprinodon variegatus demonstrated that predation pressure was quadratically correlated with water depth (inflexion point approximately 60 cm). Our results suggest that small fishes will abandon well-lighted foraging grounds in favor of the potential refuge of shaded waters as water depth increases. We suggest that studies of intertidal nekton should be carefully interpreted in the context of water depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Abrams, P. A. 1993. Why predation rate should not be proportional to predator density.Ecology 74:726–733.

    Article  Google Scholar 

  • Acosta, C. A. andM. J. Butler IV. 1997. Role of mangrove habitat as a nursery for juvenile spiny lobster,Panulirus argus, in Belize.Marine and Freshwaler Research 48:721–727.

    Article  Google Scholar 

  • Bartholomew, A., R. J. Diaz, andG. Cicchetti. 2000. New dimensionless indices of structural habitat complexity: Predicted and actual effects on predator's foraging success.Marine Ecology Progress Series 206:45–58.

    Article  Google Scholar 

  • Bartolini, J. F., M. Nelson, P. E. Patterson, andH. L. Soulen. 1997. Risk of predation affects habitat selection by the pinfishLagodon rhombiodes.Journal of Experimental Marine Biology and Ecology 208:45–56.

    Article  Google Scholar 

  • Beck, M., K. L. Heck, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan, andM. P. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.Bioscience 51:633–641.

    Article  Google Scholar 

  • Benfield, M. C. andT. J. Minello. 1996. Relative effects of turbidity and light intensity on reactive distance and feeding of an estuarine fish.Environmental Biology of Fishes 46:211–216.

    Article  Google Scholar 

  • Blaber, S. J. andT. G. Blaber. 1980. Factors affecting the distribution of juvenile estuarine and inshore fish.Journal of Fish Biology 17:143–162.

    Article  Google Scholar 

  • Boesch, D. F. andR. E. Turner. 1984. Dependence of fishery species on salt marshes: The role of food and refuge.Estuaries 7:460–468.

    Article  Google Scholar 

  • Brown, J. S. 1988. Patch use as an indicator of habitat preference, predation risk, and competition.Behavioral Ecology and Sociobiology 22:37–47.

    Article  Google Scholar 

  • Casterlin, M. E. andW. W. Reynolds. 1978. Habitat selection by juvenile bluegill sunfish,Lepomis macrochirus.Hydrobiologia 59:75–79.

    Article  Google Scholar 

  • Chapman, M. G. 2000. Poor design of behavioral experiments gets poor results: Examples from intertidal habitats.Journal of Experimental Marine Biology and Ecology 250:77–95.

    Article  Google Scholar 

  • Clynick, B. andM. G. Chapman. 2002. Assemblages of small fish in patchy mangrove forests in Sydney Harbour.Marine and Freshwater Research 53:669–677.

    Article  Google Scholar 

  • Copp, G. H. 1990. Shifts in the microhabitat of larval and juvenile roach,Rutilus rutilus, in a floodplain channel.Journal of Fish Biology 36:683–692.

    Article  Google Scholar 

  • Crowder, L. B. andW. E. Cooper. 1982. Habitat structural complexity and the interaction between bluegills and their prey.Ecology 63:1802–1813.

    Article  Google Scholar 

  • Danilowicz, B. S. andP. F. Sale. 1999. Relative intensity of predation on the French gruntHaemulon flavolineatum, during diurnal, dusk, and nocturnal periods on a coral reef.Marine Biology 133:337–343.

    Article  Google Scholar 

  • DeVries, D. R. 1990. Habitat use by bluegill in laboratory pools: Where is the refuge when macrophytes are sparse and alternative prey are present.Environmental Biology of Fishes 29:27–34.

    Article  Google Scholar 

  • Dittel, A. I., A. H. Hines, G. M. Ruiz, andK. K. Ruffin. 1995. Effects of shallow water refuge on behavior and density-dependent mortality of juvenile blue crabs in Chesapeake Bay.Bulletin of Marine Science 57:902–916.

    Google Scholar 

  • Duffy-Anderson, J. T. andK. W. Able. 2001. An assessment of the feeding success of young-of-the-year winter flounder (Pseudopleuronectes americanus) near a municipal pier in the Hudson River estuary, USA.Estuaries 24:430–440.

    Article  Google Scholar 

  • Ellis, W. L. 1995. The effect ofSpartina spp. upon the intertidal distribution of the daggerbladegrass shrimp,Palaemonetes pugio. M.S. Thesis, University of South Carolina, Columbia, South Carolina.

    Google Scholar 

  • Everett, R. A. andG. M. Ruiz. 1993. Coarse woody debris as a refuge from predation in aquatic communities: An experimental test.Oecologia 93:475–486.

    Article  Google Scholar 

  • Finelli, C. M., N. D. Pentcheff, R. K. Zimmer, andD. S. Wethey. 2000. Physical constraints on ecological processes: A field test of odor-mediated foraging.Ecology 81:784–787.

    Google Scholar 

  • Fitz, H. C. andR. G. Wiegert. 1991. Utilization of the intertidal zone of a salt marsh by the bluecrabCallinectes sapidus: Density, return frequency, and feeding habits.Marine Ecology Progress Series 76:249–260.

    Article  Google Scholar 

  • Gibson, R. N. 1973. The intertidal movements and distribution of young fish on a sandy beach with special reference to the plaice (Pleuronectes platessa).Journal of Experimental Marine Biology and Ecology 12:79–102.

    Article  Google Scholar 

  • Gibson, R. N. 2003. Go with the flow: Tidal migration in marine animals.Hydrobiologia 503:153–161.

    Article  Google Scholar 

  • Gibson, R. N., L. Pihl, M. T. Burrows, J. Modin, H. Wennhage, andL. A. Nikell. 1998. Diel movements of juvenile plaicePleuronectes platessa in relation to predators, competitors, food availability and abiotic factors on a microtidal nursery ground.Marine Ecology Progress Series 165:145–159.

    Article  Google Scholar 

  • Gibson, R. N., L. Robb, H. Wenhage, andM. T. Burrows. 2002. Ontogenic changes in depth distribution of juvenile flatfishes in relation to predation risk and temperature on a shallow-water nursery ground.Marine Ecology Progress Series 229:233–244.

    Article  Google Scholar 

  • Gilliam, J. F. andD. F. Frasier. 1987. Habitat selection under predation hazard: Test of a model with foraging minnows.Ecology 68:1856–1862.

    Article  Google Scholar 

  • Goddard, K. andA. Mathis. 1997. Microhabitat preferences of longear sunfish: Low light intensity versus submerged cover.Environmental Biology of Fishes 49:495–499.

    Article  Google Scholar 

  • Gotceitas, V. andP. Colgan. 1989. Predator foraging success and habitat complexity: Quantitative test of the threshold hypothesis.Oecologia 80:158–166.

    Google Scholar 

  • Gregory, R. S. 1993. Effect of turbidity on the predator avoidance behavior of juvenile chinook salmon (Oncorhynchus tshawytscha).Canadian Journal of Fisheries and Aquatic Sciences 50:241–245.

    Article  Google Scholar 

  • Hair, C. A., J. D. Bell, andM. J. Kingsford. 1994. Effects of position in the water column, vertical movement and shade on the settlement of fish to artificial habitats.Bulletin of Marine Science 55:434–444.

    Google Scholar 

  • Halliday, I. A., andW. R. Young. 1996. Density, biomass and species composition of fish in a subtropicalRhizophora stylosa mangrove forest.Marine and Freshwater Research 47:609–615.

    Article  Google Scholar 

  • Heck, K. L. andT. A. Thoman. 1981. Experiments on predatorprey interactions in vegetated aquatic habitats.Journal of Experimental Marine Biology and Ecology 53:125–134.

    Article  Google Scholar 

  • Helfman, G. S.. 1981. The advantage to fishes of hovering in shade.Copeia 1981:392–400.

    Article  Google Scholar 

  • Hettler, W. F.. 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA.Marine Ecology Progress Series 56:111–118.

    Article  Google Scholar 

  • Hindell, J. S. andG. P. Jenkins. 2004. Spatial and temporal variability in the assemblage structure of fishes associated with mangroves (Avicennia marina) and intertidal mudflats in temperate Australian embayments.Marine Biology 144:385–395.

    Article  Google Scholar 

  • Hovel, K. A. andR. N. Lipcius. 2001. Habitat fragmentation in a seagrass landscape: Patch size and complexity control blue crab survival.Ecology 82:1814–1829.

    Article  Google Scholar 

  • Irlandi, E. A., andM. K. Crawford. 1997. Habitat linkages: The effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish.Oecologia 110:222–230.

    Article  Google Scholar 

  • Jenkins, G. P., andM. J. Wheatley. 1998. The influence of habitat structure on nearshore fish assemblages in a southern Australian embayment: Comparison of shallow seagrass, reefalgal and unvegetated sand habitats, with emphasis on their importance to recruitment.Journal of Experimental Marine Biology and Ecology 221:147–172.

    Article  Google Scholar 

  • Jordan, F., M. Bartolini, C. Nelson, P. E. Patterson, andH. L. Soulen. 1996. Risk of predation affects habitat selection by the pinfishLagodon rhomboides.Journal of Experimental Marine Biology and Ecology 208:45–56.

    Article  Google Scholar 

  • Kennedy, M. andR. D. Gray. 1993. Can ecological theory predict the distribution of foraging animals?,Oikos 68:158–166.

    Article  Google Scholar 

  • Kneib, R. T.. 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: Causes and questions.Estuaries 7:392–412.

    Article  Google Scholar 

  • Kneib, R. T.. 1987. Predation risk and use of intertidal habitats by young fishes and shrimp.Ecology 68:379–386.

    Article  Google Scholar 

  • Kogane, T., S. Shiozawa, M. Arimoto, Y. Mizuta, andK. Tsukamoto. 1996. Association behavior of young striped jackPseudocaranx dentex to a shade of flotsam.Nippon Suisan Gakkaishi 62:865–871.

    Google Scholar 

  • Laegdsgaard, P. andC. R. Johnson. 1995. Mangrove habitats as nurseries: Unique assemblages of juvenile fish in subtropical mangroves in eastern Australia.Marine Ecology Progress Series 126:67–81.

    Article  Google Scholar 

  • Laegdsgaard, P., andC. Johnson. 2001. Why do juvenile fish utilize mangrove habitats?Journal of Experimental Marine Biology and Ecology 257:229–253.

    Article  Google Scholar 

  • Laffaille, P., S. Brosse, S. Gabas, andS. Lek. 2001. Fish spatial distribution in the littoral zone of Lake Pareloup (France) during summer.Archiv Für Hydrobiologie 153:129–144.

    Google Scholar 

  • Layman, C. A. 2000. Fish assemblage structure of the shallow ocean surf-zone on the eastern shore of Virginia barrier islands.Estuarine, Coastal and Shelf Science 51:201–213.

    Article  Google Scholar 

  • Lewis, R.. 1997. Dispersion in Estuaries and Coastal Waters, 1st edition. John Wiley and Sons Ltd., West Sussex, England.

    Google Scholar 

  • Lewis, D. B., andL. A. Eby. 2002. Spatially heterogeneous refugia and predation risk in intertidal salt marshes.Oikos 96:119–129.

    Article  Google Scholar 

  • Ley, J. A., C. C. McIvor, andC. L. Montague. 1999. Fishes in mangrove prop-root habitats of northeastern Florida Bay: Distinct assemblages across an estuarine gradient.Estuarine Coastal and Shelf Science 48:701–723.

    Article  Google Scholar 

  • Linehan, J. E., R. S. Gregory, andD. C. Schneider. 2001. Predation risk of age-0 cod (Gadus) relative to depth and substrate in coastal waters.Journal of Experimental Marine Biology and Ecology 263:25–44.

    Article  Google Scholar 

  • Lorenz, J. J., C. C. McIvor, G. V. N. Powell, andP. C. Frederick. 1997. A drop net and removable walkway used to quantitatively sample fishes over wetland surfaces in the dwarf mangroves of the southern Everglades.Wetlands 17:346–359.

    Google Scholar 

  • Lotrich, V. A.. 1975. Summer home range and movements ofFundulus heteroclitus (Pisces: Cyprinodontidae) in a tidal creek.Ecology 56:191–198.

    Article  Google Scholar 

  • Manatunge, J., T. Asaeda, andT. Priyadarshana. 2000. The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes.Environmental Biology of Fishes 58:425–438.

    Article  Google Scholar 

  • McCartt, A. L., W. E. Lynch, Jr., andD. L. Johnson. 1997. How light, a predator, and experience influence bluegill use of shade and schooling.Environmental Biology of Fishes 49:79–87.

    Article  Google Scholar 

  • McDonald, M. E., A. E. Hershey, andW. J. O'Brien. 1992. Cost of predation avoidance in young-of year lake trout (Salvelinus namaycush): Growth differential in sub-optimal habitats.Hydrobiologia 240:213–218.

    Google Scholar 

  • McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69:1341–1351.

    Article  Google Scholar 

  • Meager, J. J., D. J. Vance, I. Williamson, andN. R. Loneragan. 2003. Microhabitat distribution of juvenilePenaeus merguiensis de Man and other epibenthic crustaceans within a mangrove forest in subtropical Australia.Journal of Experimental Marine Biology and Ecology 294:127–144.

    Article  Google Scholar 

  • Miltner, R. J., S. W. Ross, andM. H. Posey. 1995. Influence of food and predation on the depth distribution of juvenile spot (Leiostomus xanthurus) in tidal nurseries.Canadian Journal of Fisheries and Aquatic Sciences 52:971–982.

    Article  Google Scholar 

  • Minello, T. J., andR. J. Zimmerman. 1983. Fish predation on juvenile brown shrimp,Penaeus aztecus: The effect of simulatedSpartina structure on predation rates.Journal of Experimental Marine Biology and Ecology 72:211–231.

    Article  Google Scholar 

  • Moksnes, P. O., L. Pihl, andJ. Montfrans. 1998. Predation on postlarvae and juveniles of the shorecrabCarcinus maenas: Importance of shelter, size and cannibalism.Marine Ecology Progress Series 166:211–225.

    Article  Google Scholar 

  • Mullin, S. J.. 1995. Estuarine fish populations among red mangrove prop roots of small overwash islands.Wetlands 15:324–329.

    Google Scholar 

  • Muotka, T., A. Huhta, andP. Tikkanen. 1999. Diel vertical movements by lotic mayfly nymphs under variable predation risk.Ecological Entomology 24:443–449.

    Article  Google Scholar 

  • Paterson, A. W. andA. K. Whitfield. 2000. Do shallow-water habitats function as refugia for juvenile fishes?Estuarine Coastal and Shelf Science 51:359–364.

    Article  Google Scholar 

  • Persson, L. andP. Eklov. 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach.Ecology 76:70–81.

    Article  Google Scholar 

  • Pierce, C. L.. 1988. Predator avoidance, microhabitat shift, and risk-sensitive foraging in larval dragonflies.Oecologia 77:81–90.

    Article  Google Scholar 

  • Price, W. W. andR. A. Schlueter. 1985. Fishes of the littoral zone of McKay Bay, Tampa Bay systems, Florida.Florida Scientist 48:83–95.

    Google Scholar 

  • Primavera, J. H.. 1997. Fish predation on mangrove-associated penaeids: The role of structures and substrate.Journal of Experimental Marine Biology and Ecology 215:205–216.

    Article  Google Scholar 

  • Rajendran, N. andK. Kathiresan. 1999. Do decomposing leaves of mangroves attract fishes?.Current Science 77:971–976.

    Google Scholar 

  • Rochette, R., andL. M. Dill. 2000. Mortality, behavior and the effects of predators on the intertidal distribution of littorinid gastropods.Journal of Experimental Marine Biology and Ecology 253:165–191.

    Article  Google Scholar 

  • Rönnbäck, P., A. Macia, G. Almqvist, L. Schultz, andM. Troell. 2002. Do penaeid shrimps have a preference for mangrove habitats? Distribution pattern analysis on Inhaca Island, Mozambique.Estuarine Coastal and Shelf Science 55:427–436.

    Article  Google Scholar 

  • Rönnbäck, P., M. Troell, N. Kautsky, andJ. H. Primavera. 1999. Distribution pattern of shrimps and fish amongAvicennia andRhizophora microhabitats in the Pagbilao Mangroves, Philippines.Estuarine Coastal and Shelf Science 48:223–234.

    Article  Google Scholar 

  • Rose, K.. 2000. Why are quantitative relationships between environmental quality and fish populations so elusive?Ecological Applications 10:367–385.

    Article  Google Scholar 

  • Rozas, L. P.. 1992. Bottomless lift net for quantitatively sampling nekton on intertidal marshes.Marine Ecology Progress Series 89:287–292.

    Article  Google Scholar 

  • Rozas, L. P., andW. E. Odum. 1988. Occupation of submerged aquatic vegetation by fishes: Testing the roles of food and refuge.Oecologia 77:101–106.

    Article  Google Scholar 

  • Rozas, L. P., andR. J. Zimmerman. 2000. Small-scale patterns of nekton use among marsh and adjacent shallow nonvegetated areas of the Galveston Bay Estuary, Texas (USA)Marine Ecology Progress Series 193:217–239.

    Article  Google Scholar 

  • Ruiz, G. M., A. H. Hines, andM. H. Posey. 1993. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: An example from Chesapeake Bay.Marine Ecology Progress Series 99:1–16.

    Article  Google Scholar 

  • Savino, J. F. andR. A. Stein. 1982. Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation.Transactions of the American Fisheries Society 11:255–266.

    Article  Google Scholar 

  • Scherer, E. andR. E. McNicol. 1998. Preference-avoidance responses of lake whitefish (Coregonus clupeaformis) to competing gradients of light and copper, lead, and zinc.Water Research 32:924–929.

    Article  CAS  Google Scholar 

  • Schlosser, I. J.. 1987. The role of predation in age- and size-related habitat use by stream fishes.Ecology 68:651–659.

    Article  Google Scholar 

  • Sheridan, P. F.. 1992. Comparative habitat utilization by estuarine macrofauna within the mangrove ecosystem of Rookery Bay, Florida,Bulletin of Marine Science 50:21–39.

    Google Scholar 

  • Sheridan, P. andC. Hays. 2003. Are mangroves nursery habitat for transient fishes and decapods?Wetlands 23:449–458.

    Article  Google Scholar 

  • Sih, A.. 1992. Prey uncertainty and the balancing of antipredator and feeding needs.The American Naturalist 139:1052–1069.

    Article  Google Scholar 

  • Sogard, S. M., G. V. Powell, andJ. G. Holmquist. 1989. Utilization by fishes of shallow, seagrass-covered banks in Florida Bay 2. Diel and tidal patterns.Environmental Biology of Fishes 24:81–92.

    Article  Google Scholar 

  • Sokal, R. R. andF. J. Rohlf. 1981. Biometry, 2nd edition. W. H. Freeman and Co, San Francisco, California.

    Google Scholar 

  • Spitzer, P. M., J. Mattila, andK. L. Heck, Jr. 2000. The effects of vegetation density on the relative growth rates of juvenile pinfish,Lagodon rhomboides (Linneaus), in Big Lagoon, Florida.Journal of Experimental Marine Biology and Ecology 244:67–86.

    Article  Google Scholar 

  • Sweeney, J., L. Deegan, andR. Garritt. 1998. Population size and site fidelity ofFundulus heteroclitus in a macrotidal saltmarsh creek.Biological Bulletin 195:238–239.

    Article  Google Scholar 

  • Thayer, G. W., D. R. Colby, andW. F. Hettler, Jr. 1987. Utilization of the red mangrove prop root habitat by fishes in south Florida.Marine Ecology Progress Series 35:25–38.

    Article  Google Scholar 

  • Vance, D. J., M. D. E. Haywood, D. S. Heales, R. A. Kenyon, N. R. Loneragan, andR. C. Pendrey. 1996. How far do prawns and fish move into mangroves? Distribution of juvenile banana prawnsPenaeus merguiensis and fish in a tropical mangrove forest in northern Australia.Marine Ecology Progress Series 131:115–124.

    Article  Google Scholar 

  • Vance, D. J., M. D. E. Haywood, D. S. Heales, R. A. Kenyon, N. R. Loneragan, andR. C. Pendrey. 2002. Distribution of juvenile penaeid prawns in mangrove forests in a tropical Australian estuary, with particular reference toPenaeus merguiensis.Marine Ecology Progress Series 228:165–177.

    Article  Google Scholar 

  • Werner, E. E., J. F. Gillam, D. J. Hall, andG. G. Mittelbach. 1983. An experimental test of the effects of predation risk on habitat use in fish.Ecology 64:1540–1548.

    Article  Google Scholar 

  • Wesche, T. A., C. M. Goertler, andC. B. Frye. 1987. Contribution of riparian vegetation to trout cover in small streams.North American Journal of Fisheries Management 7:151–153.

    Article  Google Scholar 

  • Yozzo, D. J. andD. E. Smith. 1998. Composition and abundance of resident marsh surface nekton: Comparison between tidal freshwater and salt marshes in Virginia, USA.Hydrobiologia 362:9–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, W.L., Bell, S.S. Conditional use of mangrove habitats by fishes: Depth as a cue to avoid predators. Estuaries 27, 966–976 (2004). https://doi.org/10.1007/BF02803423

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803423

Keywords

Navigation