Skip to main content
Log in

The mechanism of creep in gamma prime precipitation-hardened nickel-base alloys at intermediate temperatures

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The creep deformation of Mar-M200 single crystals of various orientations has been studied at a temperature of 1400°F. It was found by a combination of transmission microscopy and analysis of lattice rotations that shear of the γ−γ′ structure occurs by the glide of loosely coupled intrinsic/extrinsic fault pairs with a net Burgers vector ofa <112>. The orientation dependencies of both the rate and extent of primary creep are correlated with the Schmid factors and multiplicity of slip for {111}<112> systems. It is also shown that strain hardening due to intersecting slip is necessary to obtain the transition from primary to steady-state creep. In addition, it was found that the deformation mode is a function of strain rate at 1400°F. In contrast to the observed glide mechanism during creep, tensile deformation occurs by the shear of the γ and γ′ phases bya/2 <110> superlattice pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Betteridge and A. W. Franklin:J. Inst. Metals, 1956–57, vol 85, p. 473.

    Google Scholar 

  2. D. McLean:J. Inst. Metals, 1956–57, vol. 85, p. 468.

    Google Scholar 

  3. C. W. Weaver:J. Inst. Metals, 1959–60, vol. 88, p. 296.

    Google Scholar 

  4. R. F. Decker, J. P. Rowe, and J. W. Freeman: National Advisory Committee for Aeronautics, Report 1392, 1960.

  5. J. Heslop:J. Inst. Metals, 1962–63, vol. 91, p. 28.

    CAS  Google Scholar 

  6. E. L. Raymond:Trans. TMS-AIME, 1967, vol. 239, p. 1415.

    CAS  Google Scholar 

  7. G. A. Webster and B. J. Piearcey:Trans. Quart. ASM, 1966, vol. 59, p. 847.

    CAS  Google Scholar 

  8. G. A. Webster and C. P. Sullivan:J. Inst. Metals, 1967, vol. 95, p. 138.

    CAS  Google Scholar 

  9. P. W. Davies and H. E. Evans:J. Inst. Metals, 1968, vol. 96, p. 245.

    CAS  Google Scholar 

  10. C. P. Sullivan, G. A. Webster, and B. J. Piearcey:J. Inst. Metals, 1968, vol. 96, p. 274.

    CAS  Google Scholar 

  11. P. W. Davies, D. Sidey, and B. Wilshire:J. Inst. Metals, 1969, vol. 97, p. 15.

    Google Scholar 

  12. D. Sidey and B. Wilshire:Met. Sci. Jour., 1969, vol. 3, p. 56.

    CAS  Google Scholar 

  13. F. L. VerSnyder, R. B. Barrow, B. J. Piearcey, and L. W. Sink:Trans. Am. Found. Soc., 1969, vol. 55, p. 10.

    Google Scholar 

  14. O. H. Kriege and J. M. Baris:Trans. Quart. ASM, 1969, vol. 62, p. 195.

    CAS  Google Scholar 

  15. R. K. Penny, E. G. Ellison, and G. A. Webster:Mater. Res. Std., 1966, vol. 6, p. 76. Also see, D. N. Tishler and C. H. Wells,Ibid. Mater. Res. Std., 1966, vol. 6, p. 20.

    Google Scholar 

  16. B. H. Kear and M. F. Hornbecker:Trans. Quart. ASM, 1967, vol. 60, p. 644.

    Google Scholar 

  17. B. H. Kear, G. R. Leverant, and J. M. Oblak:Trns. Quart. ASM, 1969, vol. 62, p. 639.

    CAS  Google Scholar 

  18. E. Schmid and W. Boas:Plasticity of Crystals, p. 57, F. A. Hughes and Co., London, 1950.

    Google Scholar 

  19. H. I. L. Huang, O. D. Sherby, and J. E. Dorn: AIME Trans., 1956, vol. 206, p. 1385.

    Google Scholar 

  20. S. M. Copley and B. H. Kear:Trans. TMS-AIME, 1967, vol. 239, p. 984.

    CAS  Google Scholar 

  21. J. B. Wachtman, Jr:Creep of Crystalline Nonmetals, Creep and Recovery, p. 344, ASM, Cleveland, Ohio, 1957.

    Google Scholar 

  22. H. L. Burghoff and C. H. Mathewson:AIME Trans. 1941, vol. 143 p. 45.

    Google Scholar 

  23. W. G. Johnston:J. Appl. Phys., 1962, vol. 33, p. 2716.

    Article  CAS  Google Scholar 

  24. E. A. Calnan and C. J. B. Clews:Phil. Mag., 1951, vol. 42, p. 616.

    CAS  Google Scholar 

  25. P. R. Paslay, C. H. Wells, and G. R. Leverant: Accepted for publication inJ. App. Mech.

  26. J. Weertman:J. Appl. Phys, 1957, vol. 28, p. 1185.

    Article  Google Scholar 

  27. J. Weertman:Trans. TMS-AIME, 1960, vol. 218, p. 207.

    CAS  Google Scholar 

  28. F. Garofalo:Fundamentals of Creep and Creep-Rupture in Metals, The Macmillan Co., p. 91, New York, 1965.

    Google Scholar 

  29. G. A. Webster and B. J. Piearcey:Mat. Sci. Jour., 1967, vol. 1, p. 97.

    CAS  Google Scholar 

  30. J. E. Cannaday, R. J. Austin, and R. K. Saxer:Trans. TMS-AIME, 1966, vol. 236, p. 595.

    CAS  Google Scholar 

  31. J. P. Dennison, R. J. Llewellyn, and B. Wilshire:J. Inst. Metals, 1967, vol. 95, p. 115.

    CAS  Google Scholar 

  32. G. R. Leverant and D. N. Duhl: unpublished research, Pratt and Whitney Aircraft, Middletown, Conn., 1968.

  33. A. B. Kuper, D. Lazarus, J. R. Manning, and C. T. Tomizuka:J. Appl. Phys., 1956, vol. 104, p. 1536.

    CAS  Google Scholar 

  34. E. Orowan:Symposium on Internal Stresses in Metals and Alloys, p. 451. Inst. Met., London, 1948.

    Google Scholar 

  35. B. H. Kear and B. J. Piearcey:Trans. TMS-AIME, 1967, vol. 239, p. 1209.

    CAS  Google Scholar 

  36. A. Giamei and B. H. Kear: unpublished research, Pratt and Whitney Aircaraft, Middletown, Conn., 1969.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leverant, G.R., Kear, B.H. The mechanism of creep in gamma prime precipitation-hardened nickel-base alloys at intermediate temperatures. Metall Trans 1, 491–498 (1970). https://doi.org/10.1007/BF02811560

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811560

Keywords

Navigation