Skip to main content
Log in

A unified mechanism of stress corrosion and corrosion fatigue cracking

  • Environment
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A mechanism of stress corrosion cracking (SCC) is outlined in which anodic dissolution at film rupture sites relieves strain hardening and reduces the fracture stress at the crack tip. Experimental evidence is cited to suggest that relief of strain hardening occurs by interaction of subsurface dislocations with divacancies generated by the anodic dissolution. A transgranular crack propagates by accumulation of divacancies on prismatic planes which then separate by cleavage under plane strain conditions at the crack tip. At appropriate metallurgical and chemical conditions, anodic dissolution and/or divacancy migration may be enhanced at grain boundaries, leading to an intergranular failure mode. Evidence is also available to indicate that cyclic loading relieves strain hardening. Relief of strain hardening by combined cyclic loading and corrosion accounts for the higher incidence of corrosion fatigue cracking (CFC) without the requirement of any critical dissolved species. Data on fatigue of stainless steel at elevated temperature in both vacuum and air provide additional support for the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Vermilyea:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, R. W. Staehle, ed., National Assoc. Corrosion Engrs., Houston, TX, 1977, p. 208.

    Google Scholar 

  2. R. N. Parkins:5th Symposium on Line Pipe Research, Am. Gas. Assoc., Houston, TX, 1974.

  3. J. C. Scully:Fracture 1977, ICF4, Waterloo, Canada, June 19–24, 1977, vol. 1, p. 407.

    Google Scholar 

  4. R. W. Staehle:Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed., NATO, Brussels, 1971, p. 223.

    Google Scholar 

  5. F. P. Ford:Corrosion Processes, R. N. Parkins ed., Applied Science, New York, NY, 1982, p. 271.

    Google Scholar 

  6. T. P. Hoar and J. M. West:Proc. Royal Soc., 1968, vol. A268, p. 304.

    Google Scholar 

  7. T. P. Hoar and J. C. Scully:J. Electrochem. Soc., 1964, vol. 111, p. 348.

    Article  CAS  Google Scholar 

  8. D. A. Jones, C. D. Kim, and B. E. Wilde:Corrosion, 1977, vol. 33, p. 50.

    CAS  Google Scholar 

  9. R. W. Revie and H. H. Uhlig:Acta Metall., 1974, vol. 22, p. 619.

    Article  CAS  Google Scholar 

  10. R. W. Revie and H. H. Uhlig:Corrosion Sci., 1972, vol. 12, p. 669.

    Article  CAS  Google Scholar 

  11. H. H. Uhlig:J. Electrochem. Soc., 1976, vol. 123, p. 1699.

    Article  CAS  Google Scholar 

  12. M. Smialowski and J. Kostanski:Corrosion Sci., 1979, vol. 19, p. 1019.

    CAS  Google Scholar 

  13. M. C. Petit and D. Desjardins:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, R. W. Staehle, ed., NACE, Houston, TX, 1977, p. 1204.

    Google Scholar 

  14. H. W. Pickering and C. Wagner:J. Electrochem. Soc., 1967, vol. 114, p. 698.

    Article  CAS  Google Scholar 

  15. J. T. Evans and R. N. Parkins:Acta Metall., 1976, vol. 24, p. 511.

    Article  CAS  Google Scholar 

  16. C. E. Feltner and G. M. Sinclair:Int. Conf. on Creep, London, 1963, pp. 3–9.

  17. R. N. Parkins: ASTM STP 665, 1979, p. 5.

  18. A. J. A. Mom, R. T. Dencher, C. J. v. d. Wekken, and W. A. Schultze: ASTM STP 665, 1979, p. 305.

  19. R. N. Parkins and B. S. Greenwell:Metal Science, August/September, 1979, p. 405.

  20. R. N. Parkins:Br. Corrosion J., 1979, vol. 14, p. 5.

    CAS  Google Scholar 

  21. R. C. Newman, R. Roberger, and R. Bandy:Corrosion, 1983, vol. 39, p. 386.

    CAS  Google Scholar 

  22. R. Liu, N. Narita, C. Alstetter, H. Birnbaum, and E. N. Pugh:Metall. Trans. A, 1980, vol. 11A, p. 1563.

    CAS  Google Scholar 

  23. R. W. Staehle:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, R. W. Staehle, ed., NACE, Houston, TX, 1977, p. 180.

    Google Scholar 

  24. S. T. Rolfe and J. M. Barsom:Fracture and Fatigue Control in Structures, Prentice-Hall, 1977, p. 33–44.

  25. S. T. Rolfe and J. M. Barsom:op cit. Fracture and Fatigue Control in Structures, Prentice-Hall, 1977, pp. 43–46.

  26. D. L. Davidson and F. F. Lyle:Corrosion, 1975, vol. 31, p. 135.

    CAS  Google Scholar 

  27. C. Patel:Corrosion, 1980, vol. 36, p. 665.

    CAS  Google Scholar 

  28. J. A. Beavers and E. N. Pugh:Metall. Trans. A, 1980, vol. 11A, p. 809.

    CAS  Google Scholar 

  29. E. N. Pugh:Atomistics of Fracture, R. M. Latanision and J. R. Pickens, eds., Plenum, New York, NY, 1983, p. 997.

    Google Scholar 

  30. E. I. Meletis and R. F. Hochman:Corrosion, 1984, vol. 40, p. 39.

    CAS  Google Scholar 

  31. B. E. Wilde and C. D. Kim:Corrosion, 1972, vol. 28, p. 350.

    CAS  Google Scholar 

  32. T. R. Pinchback, S. P. Clough, and L. A. Heldt:Metall. Trans. A, 1976, vol. 7A, p. 1241.

    CAS  Google Scholar 

  33. A. J. Forty:Physical Metallurgy of Stress Corrosion Fracture, T. N. Rhodin, ed., Interscience, New York, NY, 1959, p. 99.

    Google Scholar 

  34. M. A. Myers and K. K. Chausla:Mechanical Metallurgy, Prentice-Hall, Englewood Cliffs, NJ, 1984, p. 373.

    Google Scholar 

  35. J. D. Verhoeven:Fundamentals of Physical Metallurgy, Wiley, 1975, p. 158.

  36. M. Takano:Proc. 5th Int. Cong. Metallic Corrosion, NACE, Houston, TX, 1974, p. 355.

  37. B. F. Brown, C. T. Fujii, and E. P. Dahlberg:J. Electrochem. Soc., 1969, vol. 116, p. 218.

    Article  CAS  Google Scholar 

  38. H. Coriou, L. Grall, C. Mahieu, and M. Pelas:Corrosion, 1969, vol. 22, p. 280.

    Google Scholar 

  39. D. Lee and D. A. Vermilyea:Metall. Trans., 1971, vol. 1, p. 2565.

    Article  Google Scholar 

  40. D. J. Duquette and H. H. Uhlig:Trans. ASM, 1968, vol. 61, p. 449.

    CAS  Google Scholar 

  41. C. Amzallag, P. Rabbe, and M. Truchon:Fracture 1977, IC4F, Waterloo, Canada, June 19–24, 1977, vol. 2, p. 873.

    Google Scholar 

  42. D. Sidey and L. F. Coffin: ASTM STP 675, 1979, p. 528.

  43. J. M. Barsom:Proc. Conf. on Corrosion Fatigue, NACE, Houston, TX, 1973, p. 424.

  44. J. T. Ryder, W. E. Krupp, D. E. Pettit, and D. W. Hoeppner: ASTM STP 642, 1976, p. 202.

  45. H. H. Lee and H. H. Uhlig:Metall. Trans., 1972, vol. 3, p. 2949.

    Article  CAS  Google Scholar 

  46. R. E. Smallman and P. S. Dobson:Vacancies/76, R. E. Smallman and J. E. Harris, eds., Metals Society, London, 1976, p. 196.

    Google Scholar 

  47. P. Hancock:ibid, p. 215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.A. A unified mechanism of stress corrosion and corrosion fatigue cracking. Metall Trans A 16, 1133–1141 (1985). https://doi.org/10.1007/BF02811682

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811682

Keywords

Navigation