Skip to main content
Log in

Improved fatigue resistance of Al-Zn-Mg-Cu (7075) alloys through thermomechanical processing

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

To decrease the accumulation of damage during long-life low-stress cyclic loading, microstructures must accommodate inelastic deformation by homogeneous or “dispersed” slip rather than by localized slip concentrations. In age-hardening aluminum alloys this requirement can be met by introducing a dense and uniform dislocation forest through suitable thermo-mechanical treatments. Such a treatment was developed for Al-Zn-Mg-Cu (7075) alloys, involving a process cycle of solution annealing, partial aging, mechanical working and final aging. The fatigue properties (S-N curves) of commercial and high-purity 7075TMT are compared with conventional 7075-T651 properties; with zero mean stress the alternating stress to cause failure in 107 cycles is more than 25 pct higher for commercial-purity 7075TMT and almost 50 pct higher for high-purity 7075TMT. The results emphasize the importance of microstructural control when high fatigue resistance is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. E. Forsyth:Proc. of the Crack Propagation Symposium, Cranfield, 1961, pp. 76–94, College of Aeronautics, Cranfield, 1962.

    Google Scholar 

  2. P. J. E. Forsyth:Acta Met., 1963, vol. 11, pp. 703–715.

    Article  Google Scholar 

  3. P. J. E. Forsyth:J. Australian Inst Metals, 1963, vol. 8, pp. 52–60.

    CAS  Google Scholar 

  4. A. J. McEvily, Jr, J. B. Clark, E. C. Utley, and W. H. Herrnstein, III:Trans. TMS-AIME, 1963, vol. 227, pp. 1093–97.

    CAS  Google Scholar 

  5. J. B. Clark and A. J. McEvily:Acta Met, 1964, vol. 12, pp. 1359–72.

    Article  CAS  Google Scholar 

  6. A. J. McEvily, Jr, J. B. Clark, and A. P. Bond:Trans. ASM, 1967, vol. 60, pp. 661–71.

    CAS  Google Scholar 

  7. T. Broom, J. A. Mazza, and V. N. Whittaker:J. Inst. Metals, 1957–58, vol. 86, pp. 17.

    CAS  Google Scholar 

  8. I. J. Polmear and I. F. Bainbridge:Phil. Mag., 1959, vol. 4, pp. 1293–1304.

    Article  Google Scholar 

  9. C. A. Stubbington and P. J. E. Forsyth:Acta Met., 1966, vol. 14, pp. 5–12.

    Article  CAS  Google Scholar 

  10. A. Abel and R. K. Ham:Acta Met., 1966, vol. 14, pp. 1495–1503.

    Article  CAS  Google Scholar 

  11. J. C. Grosskreutz and G. G. Shaw:Mechanisms of Fatigue in 7075-T6 Aluminum, AFML-TR-66-96, May 1966, AD 486 769.

  12. J. C. Grosskreutz and G. G. Shaw:Critical Mechanisms in the Development of Fatigue Cracks in 2024-T4 Aluminum, AFML-TR-68-137, May 1968, AD 840 403.

  13. J. C. Grosskreutz and G. G. Shaw:Fracture-1969, Proc. Second Intern. Conf. on Fracture, Brighton, April 1969, P. L. Pratt, ed., p. 620, Chapman and Hall, Ltd.

  14. C. Laird and G. Thomas:Intern. J. Fracture Mech., 1967, vol. 3, pp. 81–97.

    CAS  Google Scholar 

  15. A. R. Krause and C. Laird:Mater. Sci. Eng., 1967–68, vol. 2, pp. 331–47.

    Google Scholar 

  16. C. Laird and A. R. Krause:Inelastic Behavior of Solids, M. F. Kanninen, W. F. Adler, A. R. Rosenfield, and R. I. Jaffee, eds., pp. 691–715. McGraw-Hill Book Co., New York, 1970.

    Google Scholar 

  17. F. G. Ostermann and W. H. Reimann:ASTM Spec. Tech. Publ. 467, Am. Soc. Testing Mater, 1970, pp. 169–87.

  18. G. Thomas and J. Nutting:J. Inst. Metals, 1957–58, vol. 86, pp. 7–14.

    CAS  Google Scholar 

  19. M. O. Speidel:Fundamental Aspects of Stress Corrosion Cracking, pp. 561–79, National Association of Corrosion Engineers, Texas, 1969.

    Google Scholar 

  20. A. J. Jacobs:Fundamental Aspects of Stress Corrosion Cracking, pp. 530–57, National Association of Corrosion Engineers, Texas, 1969.

    Google Scholar 

  21. F. Ostermann and A. W. Brisbane: unpublished research, 1970.

  22. H. A. Holi:J. Inst. Metals., 1969, vol. 97, pp. 200–05.

    Google Scholar 

  23. R. B. Nicholson, G. Thomas and J. Nutting:J. Inst. Metals, 1958–59, vol. 87, pp. 429–38.

    Google Scholar 

  24. G. Thomas and J. Nutting:J. Inst. Metals., 1959–60, vol. 88, pp. 81–90.

    Google Scholar 

  25. G. Thomas:Phil. Mag., 1959, vol. 4, pp. 606–11.

    Article  CAS  Google Scholar 

  26. H. A. Holi:J. Inst. Metals, 1964–65, vol. 93, pp. 364–65.

    Google Scholar 

  27. H. A. Holl:Metal Sci. J., 1967, vol. 1, pp. 111–18.

    CAS  Google Scholar 

  28. B. J. Lazan and A. A. Blatherwick: WADC-TR-52-307, Pt. I, 1953, AD 7610.

  29. B. J. Lazan and A. A. Blatherwick: WADC-TR-52-307, Pt. II, 1952, AD 8136.

  30. P. Brenner:Aluminum, 1956, vol. 32, pp. 756–68.

    Google Scholar 

  31. J. C. Grosskreutz, G. G. Shaw, and D. K. Benson:The Effect of Inclusion Size and Distribution on Fatigue of 2024-T4 Aluminum, AFML-TR-69-121, 1969, AD 856 763.

  32. F. Ostermann: unpublished research, 1971.

  33. J. H. Mulherin and H. Rosenthal:Met. Trans., 1971, vol. 2, pp. 427–32.

    Article  CAS  Google Scholar 

  34. C. E. Feltner and P. Beadmore:ASTM Spec. Tech. Publ. 467, Am. Soc. Testing Mater., 1970, pp. 77–112.

  35. C. E. Feltner unpublished research, cited in Ref. 16.

  36. T. Endo and JoDean Morrow:J. Mater., 1969, vol. 4, pp. 159–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

F. OSTERMANN, formerly with Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostermann, F. Improved fatigue resistance of Al-Zn-Mg-Cu (7075) alloys through thermomechanical processing. Metall Trans 2, 2897–2902 (1971). https://doi.org/10.1007/BF02813269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02813269

Keywords

Navigation