Skip to main content
Log in

Immobilization ofSaccharomyces diastaticus on wood chips for ethanol production

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Saccharomyces diastaticus cells were immobilized onto beech wood chips of different particle size and three pH values. pH values in the range 5.0–6.0, and 1.84–1.92 mm particle size had a positive effect on the immobilization process. The chosen carrier—1.84 mm-sized wood chips adsorbed 150 mg dry cell mass per g dry carrier mass. The Gibbs free energy and the activation energy for the first (monolayer) and second (multilayer) immobilization stages was 4581, 19090 and 8590 J g mol−1, respectively. The kinetics of immobilized cell systems in ethanol production have been studied in a packed bed-reactor. Ethanol production and the respiration quotient (RQ) were at a maximum at a dilution rate of 0.16/h. The reactor was operated under steady-state conditions for 30 d at the dilution rate 0.16/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin G., De Mot R., Van Duck K., Verachtert H.: Direct alcoholic fermentation of starchy biomass using amylolytic yeast strains in batch and immobilized cell systems.Appl. Microbiol. Biotechnol. 22, 237–245 (1985).

    Article  CAS  Google Scholar 

  • Banerjee M., Debnath S., Majumdar S.K.: Production of alcohol from starch by direct fermentation.Biotechnol. Bioeng. 32, 831–834 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Bärbel H.R., Rehm H.L.: Comparison of fermentation properties and specific enzyme activities of free and calcium-alginate-entrappedSaccharomyces cerevisiae.Appl. Microbiol. Biotechnol. 33, 54–58 (1990).

    Google Scholar 

  • Calleja G.B., Levy-Rick S., Lusena C.V., Nasim A., Moranell F.: Direct and quantitative conversion of starch to ethanol bySchwanniomyces alluvius.Biotechnol. Lett. 4, 534–546 (1982).

    Article  Google Scholar 

  • Chen C., Dale M.C., Okos M.R.: The long-term effects of ethanol on immobilized cell reactor performance usingKluyveromyces fragilis.Biotechnol. Bioeng. 36, 975–982 (1990a).

    Article  CAS  PubMed  Google Scholar 

  • Chen C., Dale M.C., Okos M.R.: Minimal nutritional requirements for immobilized yeast.Biotechnol. Bioeng. 36, 993–1001 (1990b).

    Article  CAS  PubMed  Google Scholar 

  • Dale C., Chen C., Okos M.R.: Cell growth and death rates as factors in the long-term performance, modeling, and design of immobilized cell reactors.Biotechnol. Bioeng. 36, 983–992 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Debnath S., Bannerjee M., Majumdar S.K.: Production of alcohol from starch by immobilized cells ofSaccharomyces diastaticus in batch and continuous process.Process Biochem. 25, 43–46 (1990).

    CAS  Google Scholar 

  • Dekkers K., De Kok H., Roels I.: Energetics ofSaccharomyces cerevisiae CBS 426: Comparison of an anaerobic and aerobic glucose limitation.Biotechnol. Bioeng. 23, 1023–1035 (1981).

    Article  CAS  Google Scholar 

  • Divies C., Cachon R., Cavin J.F., Prevost H.: Immobilized cell technology in wine production.CRC Crit. Rev. Biotechnol. 14, 135–153 (1994).

    Article  CAS  Google Scholar 

  • Duvnjak Z., Kosaric N.: Ethanol production bySaccharomyces diastaticus, pp. 175–180 inProc. 6th Internat. Fermentation Symposium (M. Moo-Young, C.W. Robinson, Eds). Pergamon Press, London-Canada-Toronto 1981.

    Google Scholar 

  • Duvnjak Z., Kosaric N., Kliza S.: Production of alcohol from Jerusalem artichoke by yeast.Biotechnol. Bioeng. 24, 2297–2302 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Frelot D., Moulin G., Galzy P.: Strain selection for the purpose of alcohol production from starch substrates.Biotechnol. Lett. 4, 705–708 (1982).

    Article  CAS  Google Scholar 

  • Ghose T.K., Tyagi D.: Rapid ethanol fermentation of cellulose hydrolysate.Biotechnol. Bioeng. 21, 1387–1420 (1979).

    Article  CAS  Google Scholar 

  • Laluce C., Mattoon J.R.: Development of rapidly fermenting strains ofSaccharomyces diastaticus for direct conversion of starch and dextrins to ethanol.Appl. Environ. Microbiol. 48, 17–25 (1984).

    PubMed  CAS  Google Scholar 

  • Lamptey L., Robinson C.W., Moo-Young M.: Kinetics of fuel-grade ethanol production in an immobilized-yeast packed-bed bioreactor, pp. 630–633 inProc. 2nd World Congr. Chemical Engineering, Montreal (Canada) 1981.

  • Laplace J.M., Delgenes J.P., Moletta R., Navarro J.M.: Ethanol production from glucose and xylose by separated and coculture processes using high cell-density systems.Process Biochem. 28, 519–525 (1993a).

    Article  CAS  Google Scholar 

  • Laplace J.M., Delgenes J.P., Moletta R., Navarro J.M.: Effect of culture conditions on the co-fermentation of a glucose and xylose mixture to ethanol by a mutant ofSaccharomyces diastaticus associated withPichia stipitis.Appl. Microbiol. Biotechnol. 39, 760–763 (1993b).

    Article  CAS  Google Scholar 

  • Larsson P.O., Mosbach K.: Alcohol production by magnetic immobilized yeast.Biotechnol. Lett. 1, 501–506 (1979).

    Article  CAS  Google Scholar 

  • Lodder J.: The Yeast, a Taxonomic Study, 2nd ed., pp. 619–621. North-Holland Publ. Co., Amsterdam 1970.

    Google Scholar 

  • Masschelein C.A., Ryder D.S., Simon J.P.: Immobilized cell technology in beer production.CRC Crit. Rev. Biotechnol. 14, 155–177 (1994).

    Article  CAS  Google Scholar 

  • Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars.Anal. Chem. 31, 426–428 (1959).

    Article  CAS  Google Scholar 

  • Moo-Young M., Lamptey J., Robinson C.W.: Immobilization of yeast cells on various supports for ethanol production.Biotechnol. Lett. 2, 541–548 (1980).

    Article  CAS  Google Scholar 

  • Pejin D., Razmovski R.: Continuous cultivation of the yeastSaccharomyces cerevisiae at different dilution rates and glucose concentrations in nutrient media.Folia Microbiol. 38, 141–146 (1993).

    Article  CAS  Google Scholar 

  • Satterfield C.N.:Mass Transfer in Heterogeneous Catalysis, pp. 63–80. MIT Press, Massachusetts 1970.

    Google Scholar 

  • Smith M.J., Van-Ness C.H.:Introduction to Chemical Engineering Thermodynamics, p. 291 McGraw-Hill Book Co., New York 1975.

    Google Scholar 

  • Tyagi R.D., Gupta S.K., Chand S.: Process engineering studies on continuous ethanol production by immobilizedS. cerevisiae.Process Biochem. 27, 23–32 (1992).

    Article  CAS  Google Scholar 

  • Umbreit W.W., Burris R.H., Stauffer J.R.:Manometric and Biochemical Techniques, pp. 86–145. Burgess Publ. Co., Minnesota 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razmovski, R., Pejin, D. Immobilization ofSaccharomyces diastaticus on wood chips for ethanol production. Folia Microbiol 41, 201–207 (1996). https://doi.org/10.1007/BF02814700

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814700

Keywords

Navigation