Skip to main content
Log in

Influence of microstructure on fatigue crack initiation in fully pearlitic steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of microstructure on the fatigue crack initiation of fully pearlitic steels was studied through independent variation of the prior austenite grain size, pearlite colony size, and the pearlite interlamellar spacing. Increasing yield strength (controlled by decreasing the pearlite interlamellar spacing) was seen to increase the smooth and notched-bar crack initiation endurance limit. Grain and colony size variations, at constant yield strength, were seen to exhibit no effect on crack initiation. Scanning Electron Microscopy revealed smooth-bar cracks to have initiated at surface inclusions. The influence of the pearlite interlamellar spacing, reflecting a change in the effective slip length, and the differences between notched and smooth-bar fatigue specimens for studying the effects of microstructure on crack initiation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Fine and R. O. Ritchie:Fatigue and Microstructure, 1978 ASM Materials Science Seminar, ASM, Metals Park, OH, 1979, pp. 245-78.

    Google Scholar 

  2. R. C. Gibson, H. W. Hayden, and J. H. Brophy:Trans. ASM, 1968, vol. 61, pp. 85–93.

    CAS  Google Scholar 

  3. P. G. Forrest and A. E. L. Tate:J. Inst. Metals, 1964–1965, vol. 93, pp. 438–44.

    Google Scholar 

  4. A. W. Thompson and W. A. Backofen:Acta Metall., 1971, vol. 19, pp. 597–606.

    Article  CAS  Google Scholar 

  5. M. Klesnil, M. Holzmann, P. Lukas, and P. Rys:J. Iron Steel Inst., 1965, vol. 203, pp. 47–53.

    CAS  Google Scholar 

  6. W. L. Philips and R. W. Armstrong:J. Mech. Phys. Solids, 1969, vol. 17, pp. 265–70.

    Article  Google Scholar 

  7. R. M. Pelloux:Ultra-Fine Grain Metals, Syracuse University Press, Syracuse, NY, 1970, pp. 231–43.

    Google Scholar 

  8. A. Puskar:Metall. Trans. A, 1976, vol. 7, pp. 1529–33.

    Article  Google Scholar 

  9. S. Taira, K. Tanaka, and M. Hoshina:Fatigue Mechanisms, ASTM STP 675, Amer. Soc. Testing Mater., Philadelphia, PA, 1979, pp. 135–73.

    Google Scholar 

  10. G. Luetjering, T. Hamajima, and A. Gysler:Proc. 4th Int. Conf. Fracture, D.M.R. Taplin, ed., Pergamon Press, 1977, vol. 2, pp. 7–16.

  11. G. Luetjering and A. Gysler:Proc. 1st Int. Sym. Aluminum Trans- formation Techn. and Appl., C. A. Pamillo, H. Biloni, and D.E. Embury, eds., ASM, Metals Park, OH, 1980, pp. 171–210.

    Google Scholar 

  12. J.J. Lucas and P.P. Konieczny:Metall. Trans. A, 1971, vol. 2, pp. 911–12.

    Article  CAS  Google Scholar 

  13. A. Gysler, J. Lindigkeit, and G. Luetjering:Proc. 5th Int. Conf. Strength of Metals and Alloys, Pergamon Press, 1979, vol. 2, pp. 1113–18.

    CAS  Google Scholar 

  14. M. Peters, A. Gysler, and G. Luetjering:Titanium 80, Science and Technology, H. Kimura and O. Izumi, eds., AIME, Warrendale, PA, 1980, vol.’3, pp. 1777–86.

    Google Scholar 

  15. N.E. Paton, J.C. Williams, J.C. Chesnutt, and A. W. Thompson:Alloy Design for Fatigue and Fracture Resistance, AGARD Conf. Proc, AGARD-CP-185, NATO-AGARD, 1975.

  16. A. W. Bowen and C. A. Stubbington:Titanium Science and Tech- nology, Jaffee and Burte, eds., Plenum Press, New York, NY, 1973, vol. 3, pp. 2097–108.

    Google Scholar 

  17. C.A. Stubbington and A.W. Bowen:J. Mat. Sci., 1974, vol. 9, pp. 941–47.

    Article  CAS  Google Scholar 

  18. J. D. Grozier and J. H. Bucher:J. Mater., 1967, vol. 2, pp. 393–407.

    CAS  Google Scholar 

  19. G. E. Dieter, R. F. Mehl, and G. T. Home:Trans. ASM, 1955, vol. 47, pp. 423–39.

    Google Scholar 

  20. Y. H. Kim, T. Mura, and M. E. Fine:Metall. Trans. A, 1978, vol. 9, pp. 1679–83.

    Article  Google Scholar 

  21. A. Querales and J.G. Byrne:Fat. Eng. Mats. Struc, 1979, vol. 1, pp. 371–82.

    Article  CAS  Google Scholar 

  22. J.P. Benson and D. V. Edmonds:Met. Sci., 1978, vol. 12, pp. 223–32.

    Article  CAS  Google Scholar 

  23. P.O. Kettunen:J. Iron Steel Inst., 1964, vol. 203, pp. 209–15.

    Google Scholar 

  24. S. Marich:Proc. Seminar on Vanadium in Rail Steels, Vanitec, 1979, pp. 23–40.

  25. D. V. Wilson:Met. Sci., 1977, vol. 11, pp. 321–31.

    Article  CAS  Google Scholar 

  26. J.M. Hyzak and I.M. Bernstein:Metall. Trans. A, 1976, vol. 7A, pp. 1217–24.

    CAS  Google Scholar 

  27. G. T. Gay, III, A.W. Thompson, J.C. Williams, and D.H. Stone:Can. Met. Quart., 1982, vol. 21, pp. 73–78.

    Google Scholar 

  28. G. T. Gay, III, J. C. Williams, and A. W. Thompson:Metall. Trans. A, 1983, vol. 14A, pp. 421–33.

    Google Scholar 

  29. A.W. Thompson and J.C. Chesnutt :Metall. Trans. A, vol. 10A, pp. 1193–96.

  30. G. Birkbeck, A. E. Inckle, and G. W. J. Waldron:J. Mat. Sci., 1971, vol. 6, pp. 319–23.

    Article  CAS  Google Scholar 

  31. J. Schijve:Fatigue Crack Propagation, ASTM STP 415, Amer. Soc. Testing Mater., Philadelphia, PA, 1967, pp. 415–59.

    Google Scholar 

  32. P.S. Maiya and D.E. Busch:Metall. Trans. A, 1975, vol. 6A, pp. 1761–66.

    CAS  Google Scholar 

  33. G.R. Leverant, B.S. Langer, A. Yuen, and S.W. Hopkins:Metall. Trans. A, 1979, vol. 10A, pp. 251–57.

    CAS  Google Scholar 

  34. M.E. Fine:Metall. Trans. A, 1980, vol. 11A, pp. 365–79.

    CAS  Google Scholar 

  35. G.J. Fowler: Ph.D. Thesis, 1976, University of California at Los Angeles, CA.

  36. C. Laird:Fatigue Crack Propagation, ASTM STP 415, Amer. Soc. Testing Mater., Philadelphia, PA, 1967, pp. 131–81.

    Google Scholar 

  37. T. Yokobori, Y. Sawaki, S. Shono, and A. Kumasai:Trans. Japan Inst. Metals, 1976, vol. 17, pp. 1–10.

    Google Scholar 

  38. G. J. Fowler:Mat. Sci. Eng., 1979, vol. 39, pp. 121–26.

    Article  CAS  Google Scholar 

  39. S. Marich: Bulletin 663, Amer. Railway Eng. Assoc., 1977, pp. 594–610.

  40. A.R. Rosenfield, E. Votava, and G. T. Hahn:Trans. ASM, 1968, vol. 61, pp. 807–12.

    Google Scholar 

  41. A.R. Rosenfield, G.T. Hahn, and J. D. Embury:Metall. Trans., 1972, vol. 3, pp. 2797–804.

    Article  CAS  Google Scholar 

  42. P. Lukas and M. Klesnil:Mat. Sci. Eng., 1978, vol. 34, pp. 61–66.

    Article  CAS  Google Scholar 

  43. M. Klesnil and P. Lukas:Eng. Frac. Mech., 1972, vol. 4, pp. 77–92.

    Article  Google Scholar 

  44. C. Laird:Mat. Sci. Eng., 1976, vol. 22, pp. 231–36.

    Article  CAS  Google Scholar 

  45. N.E. Frost:J. Mech. Eng. Sci., 1960, vol. 2, pp. 109–19.

    Article  Google Scholar 

  46. N.E. Frost, K.J. Marsh, and L.P. Pook:Metal Fatigue, Clarendon Press, Oxford, 1974, pp. 149–56.

    Google Scholar 

  47. N.E. Dowling:Fat. Eng. Mat. Struc., 1979, vol. 2, pp. 129–38.

    Article  Google Scholar 

  48. S. Suresh and R. O. Ritchie:Int. Metals Reviews, 1984, vol. 29, pp. 445–76.

    Google Scholar 

  49. B. N. Leis, M. F. Kanninen, A. T. Topper, J. Ahmad, and D. Broek:A Critical Review of the Short Crack Problem in Fatigue, Report AFWAL-TR-83-4019, Air Force Systems Command, WPAFB, OH, January 1983.

    Google Scholar 

  50. H. Tada, P. Paris, and G. Irwin:The Stress Analysis of Cracks Hand- book, Del Research Corporation, 1973.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with Carnegie-Mellon University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, G.T., Thompson, A.W. & Williams, J.C. Influence of microstructure on fatigue crack initiation in fully pearlitic steels. Metall Trans A 16, 753–760 (1985). https://doi.org/10.1007/BF02814826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814826

Keywords

Navigation