Skip to main content
Log in

Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Ballistic impact experiments were conducted on 12.5 mm thick commercial purity titanium and Ti-6 pct Al-4 pct V alloy plates using steel “stepped” projectiles with 10.5 mm diameter. The impact velocities varied between 578 m per second and 846 m per second, and a flash X-ray technique was used to determine projectile velocity and to assure the normality of impact. The microstructural damage mechanisms associated with impact (shear band formation, shock wave propagation, and dynamic fracture) were analyzed by optical, and scanning and transmission electron microscopy. Elliptical and spherical cavities were observed along the bands. Microindentation hardness differences between the bands and adjacent regions were slight for the targets; for the projectiles, the hardness in the band was significantly lower than that of surrounding regions. Observation of the fractured regions along the bands showed unique features indicating possible melting. Transmission-electron microscopy of a shear band in titanium revealed microcrystalline features (∼0.3 µm diameter) with poorly defined grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.B. Olson, J. F. Mescall, and M. Azrin: inShock Waves and High- Strain-Rate Deformation of Metals: Concepts and Applications, M. A. Meyers and L. E. Murr, eds., Plenum Press, New York, NY, 1981, p. 221.

    Google Scholar 

  2. A.J. Bedford, A. L. Wingrove, and K. R. L. Thompson:J. of the Austr. Inst. of Metals, 1974, vol. 19, p. 61.

    CAS  Google Scholar 

  3. H.C. Rogers:Ann. Rev. Math. Sci., 1979, vol. 9, p. 283.

    Article  CAS  Google Scholar 

  4. C. Zener and J.H. Hollomon:J. Appl. Phys., 1944, vol. 15, p. 22.

    Article  Google Scholar 

  5. R.F. Recht:J. Appl. Mech. (Trans. A.S.M.E.), 1964, vol. 31, p. 189.

    Google Scholar 

  6. R. S. Culver: inMetallurgical Effects at High Strain Rates, R. W. Rohde, B. M. Butcher, J. R. Holland, and C. H. Karnes, eds., Plenum Press, New York, NY, 1973, p. 519.

    Google Scholar 

  7. D. C. Erlich, D. R. Curran, and L. Seaman: “Further Development of a Computational Shear Band Model”, Report AMMRC TR 80-3, SRI-International, Menlo Park, CA, 1980, p. 51.

    Google Scholar 

  8. R.F. Clifton: inMaterials Response to Ultra-High Loading Rates, W. Herrmann, ed., NMAB-356, National Academy of Sciences, 1980, p. 129.

  9. Y. L. Bai: in source cited in Ref. 1, p. 277.

  10. Z. S. Basinski:Proc. Roy. Soc., 1957, vol. A240, p. 229.

    Google Scholar 

  11. G. Y. Chin, W. F. Hosford, and W. A. Backofen:Trans. AIME, 1964, vol. 230, p. 437, p. 1043.

    CAS  Google Scholar 

  12. A. S. Argon: inThe Inhomogeneity of Plastic Flow, R. E. Reed-Hill, ed., American Soc. for Metals, Metals Park, OH, 1973, p. 161.

    Google Scholar 

  13. M. R. Staker:Acta Metall., 1981, vol. 29, p. 683.

    Article  CAS  Google Scholar 

  14. T. A. C. Stock and K. R. L. Thompson:Metall. Trans., 1970, vol. 1, p. 219.

    Google Scholar 

  15. G. Thomas and R. H. Willens:Acta Metall., 1964, vol. 12, p. 191.

    Article  CAS  Google Scholar 

  16. J.V. Craig and T. A. C. Stock:J. Austr. Inst. Met., 1970, vol. 15, p. 1.

    Google Scholar 

  17. R. C. Glenn and W. C. Leslie:Metall. Trans., 1971, vol. 2, p. 2945.

    Article  CAS  Google Scholar 

  18. A.L. Wingrove:J. Austr. Inst. Met., 1971, vol. 16, p. 67.

    CAS  Google Scholar 

  19. Y. Me-Bar and D. Shechtman:Mat. Sci. Eng., 1983, vol. 58, p. 181.

    Article  Google Scholar 

  20. A.L. Wingrove:Metall. Trans., 1973, vol. 4, p. 1829.

    Article  CAS  Google Scholar 

  21. P. S. DeCarli and M. A. Meyers: source cited in Ref. 1, p. 361.

  22. M.E. Backman:Terminal Ballistics, Naval Weapons Center, China Lake, CA, 1976, p. 74.

    Google Scholar 

  23. J.A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk, and D. R. Curran:Impact Dynamics, John Wiley, New York, NY, 1982, p. 164.

    Google Scholar 

  24. M. A. Meyers and C.T. Aimone:Prog, in Math. Sci., 1983, vol. 28, no. 1, p. 1.

    Article  CAS  Google Scholar 

  25. Source cited in Ref. 7, p. 73.

  26. R.L. Woodward:Metal. Trans. A, 1979, vol. 10A, p. 569.

    Article  CAS  Google Scholar 

  27. G. L. Moss: source cited in Ref. 1, p. 299.

  28. R.E. Winter:Phil. Mag., 1975, vol. 31 (4), p. 765.

    Article  CAS  Google Scholar 

  29. S. A. Manion and A. L. Wingrove:J. Austr. Inst. Met., 1972, vol. 17, p. 158.

    Google Scholar 

  30. M. K. Koul and J. F. Breedis: inThe Science, Technology and Appli- cation of Titanium, R. I. Jaffee and N. E. Promisel, eds., Pergamon Press, New York, NY, 1968, p. 817.

    Google Scholar 

  31. M. von Heimendahl:Electron Microscopy of Metals, Academic Press, New York, NY, Materials Science Series, A. S. Nowick, ed., trans- lated by U.E. Wolff, 1980, p. 95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Metallurgical and Materials Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grebe, H.A., Pak, HR. & Meyers, M.A. Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V alloy. Metall Trans A 16, 761–775 (1985). https://doi.org/10.1007/BF02814827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814827

Keywords

Navigation