Skip to main content
Log in

Mechanism of bond zone wave formation in explosion-clad metals

  • Transport Phenomena
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Results of experiments in which the collision variables were carefully controlled showed that bond zone wave formation during explosion cladding is analogous to the formation of vortex streets in fluid flow around an obstacle or in the collision of liquid streams. The fluid flow analogy explains the observed transition from a smooth metal-to-metal bond zone to a wavy bond zone above a critical collision velocity. This model is capable of predicting the minimum collision velocity necessary for bond zone wave formation in different metal systems and it also predicts correctly the strong dependence of wave size on collision angle. The magnitude of the wave size agrees with that predicted from fluid flow past a flat plate. Two other mechanisms of bond zone wave formation were explored experimentally and found to be invalid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Cowan and A. H. Holtzman:J. Appl. Phys., 1963, vol. 34, pp. 328–39.

    Google Scholar 

  2. A. H. Holtzman and G. R. Cowan:Welding Research Council Bulletin No. 104, April, 1965, American Welding Society, New York.

    Google Scholar 

  3. U.S. Patent 3,137,937.

  4. U.S. Patent 3,233,312.

  5. A. S. Bahrani and B. Crossland:Proc. Inst. Mech. Eng., 1965, vol. 179, p. 264.

    Google Scholar 

  6. A. S. Bahrant and B. Crossland.Proc. Inst. Mech. Eng., 1965–66, vol. 180. Part 31, Paper 22.

  7. E. Schmidtmann, W. Koch and H. Schenk:Arch. Eisenhüttenw., 1965, vol. 36, pp. 667–76.

    Google Scholar 

  8. B. Crossland, A. S. Bahrani, J. D. Williams, and V. Shribman:Welding and Material Fabrication, 1967, vol. 35, pp. 88–94.

    CAS  Google Scholar 

  9. J. L. Demaris and A. Pocalyko:Am. Soc. of Tool Manuf. Eng., 1966, ASTME Paper AD66-113.

  10. A. Pocalyko and C. P. Williams,Welding J., 1964, vol. 43, pp. 854–61.

    Google Scholar 

  11. O. R. Bergmann, G. R. Cowan and A. H. Holtzman:Trans. TMS-AIME, 1966, vol. 236, pp. 646–53.

    CAS  Google Scholar 

  12. W. Klein:Techn. Mitt Krupp Forsch. Ber., 1965, vol. 23, pp. 1–9.

    Google Scholar 

  13. A. Burkhardt, E. Hornbogen and K. Keller:Z. Metallk., 1967, vol. 58, pp. 410–15.

    CAS  Google Scholar 

  14. O. R. Bergmann:Met. Eng. Quart., ASM, 1966, pp. 60–64.

  15. A. S. Bahrani, T. J. Black, and B. Crossland:Proc. Roy. Soc., 1967, vol. A296, pp. 123–36.

    Article  CAS  Google Scholar 

  16. G. Birkhoff and E. H. Zarantello:Jets, Wakes, and Cavities, p. 280, Academic Press, New York, 1957.

    Google Scholar 

  17. Modern Developments in Fluid Dynamics, S. Goldstein, ed., Dover Publications, Inc., New York, 1965.

    Google Scholar 

  18. F. H. Harlow and J. E. Fromm:Phys. Fluids, 1964, vol. 7, pp. 1147–56.

    Article  Google Scholar 

  19. G. R. Cowan and A. S. Balchan:Phys. Fluids, 1965, vol. 8, pp. 1817–27.

    Article  CAS  Google Scholar 

  20. A. A. Deribas, V. M. Kudinov, and F. I. Matveenkov:FGV/Combustion, Explosions and Shock Wavest, 1967, vol. 3, pp. 561–68 [344–48].

    CAS  Google Scholar 

  21. L. Prandt:Essentials in Fluid Dynamics, Haffner Publishing Co., New York, 1944.

    Google Scholar 

  22. A. Goldburg, W. K. Washburn, and B. H. Florsheim,AIAA Jour., 1965, vol. 3, pp. 1332–33.

    Google Scholar 

  23. S. Taneda:J. Phys. Soc. Japan, 1958, vol. 13, pp. 418–25.

    Article  Google Scholar 

  24. Modern Developments in Fluid Dynamics, S. Goldstein, ed., p. 136 Dover Publications, Inc., New York, 1965.

    Google Scholar 

  25. Chemical Engineers' Handbook, 4th Ed., J. H. Perry, ed., p. 5–60, McGraw-Hill, Inc., New York, 1963.

    Google Scholar 

  26. R. Wille: inAdvan. Appl. Mech., vol. VI, p. 281, Academic Press, New York 1960.

    Google Scholar 

  27. Homann, F.:Forsch. Gebiete Ingenieurw., 1936, vol. 7, pp. 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowan, G.R., Bergmann, O.R. & Holtzman, A.H. Mechanism of bond zone wave formation in explosion-clad metals. Metall Trans 2, 3145–3155 (1971). https://doi.org/10.1007/BF02814967

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814967

Keywords

Navigation