Skip to main content
Log in

T-elements: State of the art and future trends

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

Trefftz-type elements, or T-elements, are finite elements the internal field of which fulfils the governing differential equations of the problema priori whereas the interelement continuity and the boundary conditions are enforced in an integral weighted residual sense or pointwise. Although the key ideas of such elements can be traced back to Jirousek and Leon in 1977, the T-element approach has received serious attention only for the past ten years. The T-element approach makes it possible to generate highly accurate h- or p-elements exhibiting many important advantages over their more conventional counterpart. The paper surveys existing T-element formulations (including some yet unpublished ones) and assesses critically their performance (accuracy, h- and p-convergence, sensitivity to mesh distortions, handling of singularities and geometry or load induced local effects, etc.). The available applications include plane elasticity, thin and thick plates, cylindrical shells, axisymmetric 3-D elasticity, Poisson's equation and transient heat conduction analysis. Existing approaches to adaptive reliability assurance based on p-extension are also discussed and future trends in the T-element research shortly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

vector of coefficients of a set of T-functions involved in the internal field of the element

d :

vector of degrees of freedom of the element

d u :

vector of generalized boundary displacementsv in collocation points

k :

element stiffness matrix

m :

number of T-functions in internal element fieldu

m RIG :

number of rigid body modes of element

m STR :

number of strain modes in fieldu (number of T-functions without rigid body modes)

r:

vector of equivalent nodal reactions

\(\dot r\) :

particular part ofr

t :

vector of the boundary tractions of the element, derived from its internal displacement fieldu

\(\dot t\) :

particular part of t

\(\bar t\) :

imposed boundary tractions

\(\hat t\) :

auxiliary boundary traction functions

\(\tilde t\) :

traction frame (independent oft), expressed in terms of nodal stress parametersr'

u :

intraelement vector of displacements, expressed in terms of parametersc

ů :

particular part ofu

v :

vector of generalized boundary displacements derived fromu

\(\dot v\) :

particular part ofv

\(\bar v\) :

imposed generalized boundary displacements

\(\tilde v\) :

displacement frame (independent ofv), expressed in terms of nodal DOFd

CIQ :

conventional isoparametric quadratic element

E :

Young modulus

M :

number of hierarchic degrees of freedom associated with mid-side nodes

N :

total number of degree of freedom of the element assembly (imposed degree of freedom included)

N a :

number of active degrees of freedom of the element assembly

N DOF :

number of degrees of freedom of element

N :

matrix of homogeneousT-functions in intraelement displacement field

V :

matrix of homogeneousT-function inv

\(\tilde v\) :

matrix of shape functions in displacement frame\(\tilde v\)

T :

Matrix of boundary tractions due to homogeneous T-functionsN

\(\tilde T\) :

matrix of shape functions in traction frame\(\tilde t\)

U, U EX,U FE :

generalized energy, its exact value and value calculated by FEM

ε:

relative error energy norm

\(\Gamma ^e \) :

element boundary

\(\Gamma _t^e \) :

part of element boundary on which tractions are imposed

\(\Gamma _v^e \) :

part of element boundary on which displacements are imposed

\(\Gamma _I^e \) :

interelement part of\(\Gamma ^e \)

\(\Omega ^e \) :

element domain

CT-T:

element formulation based on collocation

HT-D:

hybrid T-element with displacement frame

HT-T:

hybrid T-element with traction frame

HTLS1-D:

hybrid least squares displacement frame T-element

HTLS2-D:

modified hybrid least squares displacement frame T-element

HTLS1-T:

hybrid least squares T-element with traction frame

HT-DI:

hybrid T-element with interelement displacement frame

HT-TI:

hybrid T-element with interelement traction frame

HTLS-DI:

hybrid least squares T-element with interelement displacement frame

LST:

direct least squares T-element formulation

References

  1. E. Trefftz (1926), “Ein Gegenstück zum Ritzschen Verfahren”, inProceedings 2nd International Congress of Applied Mechanics, (Zurich), 131–137.

  2. I. Herrera (1977), “Theory of connectivity for formal symmetric operators”,Proc. Natl. Acad. Sci. USA/Appl. Math. Phys. Sc./No 74/,11, 4722–4725.

    MathSciNet  Google Scholar 

  3. I. Herrera and F. Sabina (1978), “Connectivity as an alternative to boundary integral equations: Constructions of bases”,Proc. Natl. Acad. Sc. USA/Appl. Math. Phys. Sc./No 75/,5, 2059–2063.

    MathSciNet  Google Scholar 

  4. I. Herrera (1980), “Boundary methods: a criterion for completness”,Proc. Natl. Acad. Sc. USA /Appl. Math. Phys. Sc./No 77/,8, 4395–4398.

    Article  MathSciNet  Google Scholar 

  5. I. Herrera (1984),Boundary Methods—an Algebraic Theory. Pitman Advanced Publishing Program, Boston-London-Melbourno.

    MATH  Google Scholar 

  6. I. Herrera (1984), “Trefftz method”, inTopics in Boundary Element Research (C. A. Brebbia, ed.), Vol. 1, New York, Springer-Verlag.

    Google Scholar 

  7. E. Stein (1973), “Die Kombination des modifizierten Trefftzschen Verfahrens mit der Methode der Finiten Elemente”, inFinite Elemente in der Statik (K. Buck, D. Scharpf, E. Stein, and W. Wunderlich, eds.), 172–185.

  8. G. Ruoff (1973), “Die praktische Berechnung der Kopplungsmatrizen bei der Kombination der Trefftzschen Metode und der Metode der finiten Elemente bei flachen Schalen”, inFinite Elemente in der Statik (K. Buck, D. Scharpf, E. Stein, and W. Wunderlich, eds.), 242–259.

  9. P. Tong, P. H. Pian and S. L. Lasry (1973), “A hybrid-element approach to crack problems in plane clasticity”,Int. J. Numer. Meth. Eng.,7, 297–308.

    Article  MATH  Google Scholar 

  10. M. Tolley (1978), “Application de la méthode des grands éléments singuliers à la résolution de l'équation biharmonique avec conditions aux limites discontinues”,C.R. Acad. Sci. Paris,287, 875–878. série A.

    MATH  MathSciNet  Google Scholar 

  11. K. Lin and P. Tong (1980), “Singular finite elements for the fracture analysis of V-notched plates”,Int. J. Numer. Meth. Eng.,15, 1343–1354.

    Article  MATH  Google Scholar 

  12. M. L. Williams (1952), “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”,J. Appl. Mech.,19, 526–528.

    Google Scholar 

  13. M. Williams (1952), “Surface stress singularities resulting from various boundary conditions in angular corners of plate bending”, in1st U.S. Nat. Cong. Appl. Mech.

  14. R. Piltner (1982), “Spezielle finite Elemente mit Löchern, Ecken und Rissen unter Verwendung von analytischen Teillösungen”, Fortschritt-Berichte der VDI Zeitschriften. Reihe 1, Nr. 96, VDI-Verlag GmbH, Düsseldorf.

    Google Scholar 

  15. R. Piltner (1985), “Special finite elements with holes and internal cracks”,Int. J. Numer. Meth. Eng.,21, 1471–1485.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. D. Gerhardt (1984), “A hybrid/finite element approach for stress analysis of notched anisotropic materials”,Trans. ASME,51, 804–810.

    MATH  Google Scholar 

  17. O. Zienkiewicz, D. Kelly and P. Bettes (1977), “The coupling of the finite element method and the boundary solution procedures”,Int. J. Numer. Meth. Eng.,11, 355–375.

    Article  MATH  Google Scholar 

  18. O. Zienkiewicz, D. Kelly, and P. Bettes (1979), “Mariage á la mode—the best of both worlds (finite elements and boundary integrals)”, inEngineering Method in Finite Element Analysis (R. Glowinski, E. Rodin, and O. Zienkiewicz, eds.), 81–107, London-New York, Wiley.

    Google Scholar 

  19. J. Jirousek and N. Leon (1977), “A powerful finite element for plate bending”,Comp. Meth. Appl. Mech. Eng.,12, 77–96.

    Article  MathSciNet  Google Scholar 

  20. J. Jirousek (1978), “Basis for development of large finite elements locally satisfying all field equations”,Comp. Meth. Appl. Mech. Eng.,14, 65–92.

    Article  Google Scholar 

  21. J. Jirousek and P. Teodorescu (1982), “Large finite elements method for the solution of problems in the theory of clasticity”,Comp. Struct.,15, 575–587.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Jirousek and L. Guex (1986), “The hybrid-Trefftz finite element model and its application to plate bending”,Int. J. Numer. Meth. Eng.,23, 651–693.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Jirousek and M. N'Diaye (1990), “Solution of orthotropic plates based on p extension of the hybrid-Trefftz finite element model”,Comp. Struct.,34, 51–62.

    Article  MATH  Google Scholar 

  24. G. M. Vörös and J. Jirousek (1991) “Application of the hybrid-Trefftz finite element model to thin shell analysis”, inProc. European Conf. on New Advances in Comp. Struc. Mech. (P. Ladeveze and O. C. Zienkiewicz, eds.), (Giens, France), 547–554, Elsevier.

  25. J. Petrolito (1990), “Hybrid-Trefftz quadrilateral elements for thick plate analysis”,Comp. Meth. Appl. Mech. Eng.,78, 331–351.

    Article  MATH  Google Scholar 

  26. J. Jirousek, A. Wróblewski, and B. Szybiński (1995), “A new 12DOF quadrilateral element for analysis of thick and thin plates”,Int. J. Numer. Meth. Eng.,38, 2619–2638.

    Article  MATH  Google Scholar 

  27. J. Jirousek, A. Wróblewski, Q. Qin, and X. He, “A family of quadrilateral hybrid-Trefftz p-elements for thick plate analysis”,Comp. Meth. Appl. Mech. Eng. (in print).

  28. R. Piltner (1992), “A quadrilateral hybrid-Trefftz plate bending element for the inclusion of warping based on a three-dimensional plate formulation”,Int. J. Numer. Meth. Eng.,33, 387–408.

    Article  MATH  Google Scholar 

  29. R. Piltner (1989), “On the representation of three-dimensional elasticity solutions with the aid of complex valued functions”,J. Elast.,22, 45–55.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Wróblewski, A. P. Zieliński, and J. Jirousek (1992), “Hybrid-Trefftz p-element for 3-D axisymmetric problems of clasticity”, inNumerical Methods in Engineering'92, Proc. First Europ. Conf. on Numer. Meth. in Eng. (C. Hirsch, O. C. Zienkiewicz. and E. Oñate, eds.), (Brussels), 803–810, Elsevier.

  31. A. Wróblewski and J. Jirousek (1993), “Application of hybrid-Trefftz p-elements to stress analysis in shafts”, inProc. XI Polish Conference on Comp. Meth. in Mech., vol. 2, (Kielce-Cedzyna, Poland), 983–990.

  32. A. P. Zicliński and O. C. Zienkiewicz (1985), “Generalized finite element analysis with T-complete boundary solution functions”,Int. J. Numer. Meth. Eng.,21, 509–528.

    Article  Google Scholar 

  33. J. Jirousek and Q. H. Qin (1994). “Application of hybrid-Trefftz element approach to transient heat conduction analysis”, Int. Rep. LSC 94/10, Swiss Federal Institute of Technology, Lausanne.

    Google Scholar 

  34. J. Jirousek and A. Venkatesh (1990), “A new FE approach for adaptive reliability assurance”,Comp. Struct.,37, 217–230.

    Article  MATH  Google Scholar 

  35. J. Jirousek and A. Venkatesh (1992), “Hybrid-Trefftz plane elasticity elements with p-method capabilites”,Int. J. Numer. Meth. Eng.,35, 1443–1472.

    Article  MATH  Google Scholar 

  36. A. Venkatesh and J. Jirousek (1989), “Accurate analysis of thin plates under concentrated loading”, IREM Int. Rep. 89/6, Swiss Federal Institute of Technology, Lausanne, June.

    Google Scholar 

  37. A. Venkatesh and J. Jirousek (1995), “Accurate representation of local effect due to concentrated and discontineous loads in hybrid-Trefftz plate bending elements”,Comp. Struct.,57, 863–870.

    Article  MATH  Google Scholar 

  38. A. Venkatesh and J. Jirousek (1991). “Finite element formulation for the analysis of local effects”, inContact Loading and Local Effects in Thin Walled Plated and Shell Structures (V. Krupka and M. Drdacky, eds.), Berlin, Springer-Verlag.

    Google Scholar 

  39. J. Jirousek (1987), “Hybrid-Trefftz plate bending elements with p-method capabilities”,Int. J. Numer. Meth. Eng.,24, 1367–1393.

    Article  MATH  Google Scholar 

  40. J. Jirousek and A. Venkatesh (1989), “Implementation of curvilinear geometry into p-version HT plate elements”,Int. J. Numer. Meth. Eng.,28, 431–443.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Jirousek and A. Venkatesh (1989), “A simple stress error estimator for hybrid-Trefftz p-version elements”,Int. J. Numer. Meth. Eng.,28, 211–236.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Jirousek and A. Venkatesh (1990), “Adaptivity in hybrid-Trefftz finite element formulation”,Int. J. Numer. Meth. Eng.,29, 391–405.

    Article  Google Scholar 

  43. J. Jirousek, B. Szybiński, and A. Wróblewski (1994), “Mesh design and reliability assurance in hybrid-Trefftz p-element approach”, Int. Rep. LSC 94/15, Swiss Federal Institute of Technology, Lausanne.

    Google Scholar 

  44. J. Jirousek and A. P. Zieliński (1992), “Study of two complementary hybrid-Trefftz p-element formulations”, inNumerical Methods in Engineering '92, Proc. First Europ. Conf. on Numer. Meth. in Eng. (C. Hirsch, O. C. Zienkiewicz, and E. Oñate, eds.), (Brussels), 583–590, Elsevier.

  45. J. Jirousek and A. P. Zicliński (1993), “Dual hybrid-Trefftz element formulation based on independent boundary traction frame”,Int. J. Numer. Meth. Eng.,36, 2955–2980.

    Article  MATH  Google Scholar 

  46. J. Jirousek, A. P. Zicliński, H. Rabemanantsoa, and A. Venkatesh (1992), “Study of two alternative p-element formulations”, inNew Advances in Comp. Struc. Mech. (P. Ladeveze and O. C. Zienkiewicz, eds.), 189–203, Elsevier.

  47. J. Jirousek, A. Venkatesh, A. P. Zicliński, and H. Rabemantantsoa (1993), “Comparative study of p-extensions based on conventional assumed displacement and hybrid-Trefftz FE models”,Comp. Struct.,46, 261–278.

    Article  MATH  Google Scholar 

  48. J. Jirousek (1993), “T-elements: An approach uniting the adventages of finite element and boundary element methods”, inProc. XI Polish Conference on Comp. Meth. in Mech., vol. 3, (Kielce-Cedzyna, Poland), 21–40.

  49. J. Jirousek and A. Wróblewski (1995), “T-elements: A finite element approach with advantages of boundary solution methods”, Int. Rep. LSC 95/04, Swiss Federal Institute of Technology, Lausanne.

    Google Scholar 

  50. J. Jirousek (1991), “New trends in hybrid-Trefftz p-element approach”, inThe Finite Element Method in the 1990's, a book dedicated to O.C. Zienkiewicz (E. Oñate, J. Periaux, and A. Samuelson, eds.) Barcelone, Springer-Verlag.

    Google Scholar 

  51. E. Stein and K. Peters (1991), “A new boundary-type finite element for 2D and 3D clastic solids”, inThe Finite Element Method in the 1990's, a book dedicated to O.C. Zienkiewicz (E. Oñate, J. Periaux, and A. Samuelson, eds.), 35–48, Barcelone, Springer-Verlag.

    Google Scholar 

  52. J. Jirousek (1992), “Equivalent FE and BE forms of a substructure oriented boundary solution approach”, Publicaciòn CIMNE 20, Centro Internacional de Metodos Numericos en Ingenieria, Barcelona.

    Google Scholar 

  53. M. Stojek and J. Jirousek (1993), “Study of direct Trefftz element approach for the Poisson equation in 2D”, inProc. XI Polish Conference on Comp. Meth. in Mech., vol. 2, (Kielce-Cedzyna, Poland), 863–870.

  54. J. Jirousek and A. Wróblewski (1994), “Least-squares T-elements: equivalent FE and BE forms of a substructure-oriented boundary solution approach”,Comm. Numer. Meth. Eng.,10, 21–32.

    Article  MATH  Google Scholar 

  55. J. Jirousek and M. Stojek, “Numerical assessment of a new T-element approach”,Comput. Struct. (in print).

  56. J. Jirousek and A. Zicliński (1995), “Survey of Trefftz-type element formulations”, Int. Rep. LSC 95/06, Swiss Federal Institute of Technology, Lausanne.

    Google Scholar 

  57. J. Jirousek (1993), “Variational formulation of two complementary hybrid-Trefftz FE models”,Comm. Numer. Meth. Eng., 837–845.

  58. B. M. Fracijs de Veubeke (1980), “Diffusive equilibrium models”, inB.M. Fraeijs de Veubeke Memorial Volume of Selected Papers (M. Gerardin, ed.), Netherlands, Sijthoff & Noordhoff.

  59. J. Robinson (1973),Integrated theory of finite element methods. John Wiley & Sons.

  60. C. Hochard and R. Proslier (1992), “A simplified analysis of plate structures using Trefftz-functions”,Int. J. Numer. Meth. Engng.,34, 179–195.

    Article  MATH  Google Scholar 

  61. D. Wang, I. Katz, and B. Szabo (1984), “Implementation ofC 1 triangular element based on p-version of the finite element method”,Comp. Struct.,19, 381–392.

    Article  MATH  Google Scholar 

  62. J. L. Batoz and M. B. Tahar (1982), “Evaluation of a new quadrilateral thin plate bending element”,Int. J. Numer. Meth. Eng.,18, 1655–1677.

    Article  MATH  Google Scholar 

  63. S. Timoshenko and J. Goodyear (1982),Theory of elasticity, 3rd ed. McGraw-Hill, New York.

    Google Scholar 

  64. J. Kołodziej and M. Kleiber (1989), “Boundary collocation method vs. FEM for some harmonic 2D problems”,Comp. Struct. 33, 155–168.

    Article  Google Scholar 

  65. I. Babuška and M. Suri (1990), “The p- and h-p version of the finite element method, an overview”,Comp. Meth. Appl. Mech. Engng.,80, 5–26.

    Article  Google Scholar 

  66. J. Jirousek (1985), “Structural analysis program SAFE—special features and advanced finite element models”,Adv. Eng. Software,7, 68–76.

    Google Scholar 

  67. S. Timoshenko and S. Woinowsky-Kriger (1969).Theory of plates and shells, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  68. J. Jirousek (1985), “Implementation of local effects into conventional and non-conventional finite element formulations”, inLocal Effects in the Analysis of Structures (P. Ladeveze, ed.), Amsterdam, Elsevier.

    Google Scholar 

  69. J. Jirousek and M. N'Diaye (1992), “Hybrid-Trefftz p-method elements for analysis of flat slabs with drops”,Comp. Struct.,43, 163–179.

    Article  Google Scholar 

  70. B. A. Szabo and I. Babuška (1986), “Compution of amplitude of stress singular terms for cracks and reentrant corners”, report WU/CCM-86/1, Washington Univ. in St. Louis.

  71. E. Reissner (1945), “The effect of shear deformation on the bending of elastic plates”,J. Appl. Mech. ASME,12, 69–76.

    MathSciNet  Google Scholar 

  72. R. D. Mindlin (1951), “Influence of rotatory inertia and shear in flexural motion of isotropic elastic plates”,J. Appl. Mech.,18, 31–38.

    MATH  Google Scholar 

  73. O. C. Zienkiewicz and R. Taylor (1991),The Finite Element Method. McGraw-Hill, New York.

    Google Scholar 

  74. T. J. R. Hughes (1987),The Finite Element Method: Linear Static and Dynamic Analysis. Prentice-Hall, Englwood Cliffs.

    MATH  Google Scholar 

  75. J. L. Batoz and G. Dhatt (1990),Modélisation des Structures par Eléments Finis. Hermes, Paris.

    Google Scholar 

  76. J. Mackerele (1995), “Static and dynamic analysis of plates using finite element and boundary element technique—A bibliography (1992–1994)”,Finite Elements in Analysis and Design,20, 139–154.

    Article  MathSciNet  Google Scholar 

  77. Z. Xu (1986), “A simple and efficient triangular finite element for plate bending”,Acta Mechanica Sinica,2, 185–192.

    Article  Google Scholar 

  78. M. A. Aminpour, (1990) “A 4-node assumed stress hybrid shell element with rotational degrees of freedom”, NASA CR-4279.

  79. Z. Xu (1992), “A thick-thin triangular element”,Int. J. Numer. Meth. Eng.,33, 963–973.

    Article  Google Scholar 

  80. M. A. Aminpour (1992), “Direct formulation of a hybrid 4-node shell element with drilling degrees of freedom”,Int. J. Numer. Meth. Eng.,35, 997–1013.

    Article  MATH  Google Scholar 

  81. O. Zienkiewicz, Z. Xu, L. F. Zeng, A. Samuelson, and N. E. Wiberg (1993), “Linked interpolation for Reissner-Mindlin plate elements: Part I—A simple quadrilateral”,Int. J. Numer. Meth. Eng.,36. 3043–3056.

    Article  MATH  Google Scholar 

  82. R. L. Taylor and F. A. Auricchio (1993), “Linked interpolation for Reissner-Mindlin plate elements: Part II—A simple triangle”,Int. J. Numer. Meth. Eng.,36, 3057–3066.

    Article  MATH  Google Scholar 

  83. A. Ibrahimbergovic (1993), “Quadrilateral finite elements for analysis of thick and thin plates”,Comp. Meth. Appl. Eng.,110, 195–209.

    Article  Google Scholar 

  84. Q. Qin (1995), “Hybrid-Trefftz finite element method for Reissner plates on elastic foundation”,Comp. Meth. Appl. Mech. Eng.,122, 379–392.

    Article  MATH  Google Scholar 

  85. H. Hai-Chang (1963), “On some problems of the antisymmetrical small deflection of isotropic sandwich plate”,Acta Mech. Sinica,6, 53–60. (in chinese).

    MathSciNet  Google Scholar 

  86. G. Korn and T. Korn (1968),Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York.

    Google Scholar 

  87. H. Reismann (1988).Elastic Plates: Theory and Applications. Wiley, New York.

    Google Scholar 

  88. V. Panc (1975),Theories of Elastic Plates, Noordhoff, Leidin.

    MATH  Google Scholar 

  89. S. Ahmad, B. M. Irons, and O. C. Zienkiewicz (1970), “Analysis of thick and thin shell structures by curved finite elements”,Int. J. Numer. Meth. Engng.,2, 419–451.

    Article  Google Scholar 

  90. E. Hinton and J. Campbell (1974), “Local and global smoothing of discontinuous, finite element functions using a least square method”,Int. J. Numer. Meth. Eng.,8, 461–480.

    Article  MATH  MathSciNet  Google Scholar 

  91. H. Neuber (1937),Kerbspannungslehre, Springer-Verlag, Berlin.

    Google Scholar 

  92. P. Papkovich (1932), “Solution générale des équations différentielles fondamentales de l'élasticité exprimée par trois fonctions harmoniques”,C. R. Acad. Sci. Paris,195, 513–515.

    Google Scholar 

  93. P. Moon and D. Spencer (1988),Field Theory Handbook, 3rd ed. Springer-Verlag, Berlin.

    Google Scholar 

  94. H. Kraus (1967),Thin Elastic Shells, Wiley, New York.

    MATH  Google Scholar 

  95. W. Kratzig (1980), “On the structure of consistent lincar shell theories,” inProceedings of 3rd IUTAM symposium on Theory of Shells (W. Koiter and G. Mikhailov, eds.), Tbilisi, North Holland.

    Google Scholar 

  96. J. Lambert (1973)Computational Methods in Ordinary Differential Equations, John Wiley & Sons, London.

    MATH  Google Scholar 

  97. J. Bruch and G. Zyvoloski (1974), “Transient two-dimensional heat conduction problems solved ty the finite element”,Int. J. Numer. Meth. Engng.,8, 481–494.

    Article  MATH  Google Scholar 

  98. J. Jirousek, A. Boubergnig, and F. Froy (1985), “An efficient unified post-processing approach based on a probabilistic concept”, inProc. Int. Conf. NUMETA 85, Univ. of Swansea, UK (J. Middleton and G. Pande, eds.), (Rotterdam-Boston), 723–732, A.A. Balkema.

  99. H. Meltzer and R. Rannacher (1980), “Spannungskonzentrazionem in Eckpunkten der Kirchhoffschen Platte”,Bauingenieur,55, 181–184.

    Google Scholar 

  100. J. Robinson (1985), “An evaluation of skew sensitivity of thirty three plate bending elements in nineteen FEM systems’, Finite Element News-Special Report.

  101. S. Szabo (1986), “Mesh design for the p-version of the finite element method”,Comp. Meth. Appl. Mech. Eng.,55, 181–197.

    Article  MATH  Google Scholar 

  102. SURFER—Reference Manual ver. 4. Golden Software Inc., Golden. Colorado 80402, US.

  103. M. Stern and T. Lin (1986), “Thin clastic plates in bending,”, inDevelopments in Boundary Element Methods (P. Banerjee and J. Watson, eds.), 91–120, London-New York, Elsevier.

    Google Scholar 

  104. W. Flügge (1928),Die Strenge Berechnung von Kreisplatten unter Enzellasten. Springer. Berlin.

    Google Scholar 

  105. J. Jirousek, B. Szybiński, and A.P. Zicliński (1995), “Application of hybrid Trefftz p-element to analysis of folded plates.”, inProceedings XII Polish Conference on Computer Methods in Mechanics, (Warsaw-Zegrze, Poland), 146–148.

  106. Y.K. Cheung, W.G. Jin and O.C. Zienkiewicz (1991), “Solution of Helmholtz equation by Trefftz method”,Int. J. Numer. Meth. Eng.,32, 63–78.

    Article  MATH  Google Scholar 

  107. A.P. Zicliński (1988), “Trefftz method: clastic and clasto-plastic problems”,Comp. Meth. Appl. Mech. Eng.,69, 185–204.

    Article  Google Scholar 

  108. Q.H. Qin (1995), “Postbuckling analysis, of thin plates by a hybrid-Trefftz finite element method”,Comp. Meth. Appl. Mech. Eng.,128, 123–136.

    Article  MATH  Google Scholar 

  109. J. Jirousek and A.P. Zicliński. “A HT-element approach to clasto-dynamic analysis” (in preparation).

  110. B. Szybiński and A.P. Zieliński (1995), “Alternative T-complete systems of shape functions applied in analytical Trefftz finite elements”,Num. Meth. for Part. Diff. Equations,11, no. 4, 375–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research engineer, on leave from the Institute of Mechanics and Machine Design

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jirousek, J., Wróblewski, A. T-elements: State of the art and future trends. ARCO 3, 323–434 (1996). https://doi.org/10.1007/BF02818934

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818934

Keywords

Navigation