Skip to main content
Log in

On some mixed finite element methods for incompressible and nearly incompressible finite elasticity

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We compare some mixed methods based on different variational formulations, namely a displacement-pressure formulation employed by de Borst and coworkers, the three-field formulation investigated by Simo and Taylor and a two-field formulation which is directly based on an energy functional. It emerges that all these yield the same discrete results if the stored energy function contains a volumetric contribution 1/2k(J−1)2 whereJ is the volume dilatation, i.e., the Jacobian determinant of the deformation, andk is the bulk modulus. The equivalence holds for arbitrary 3D and plane strain elements. In the numerical examples the mixed formulations are discretized by the quadrilateral Q1/P0 and Q2/P1 elements and the triangular Crouzeix-Raviart P2+/P1 element. We also compare with standard displacement elements and the enhanced strain Q1/E4 element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atluri, S. N.;Reissner, E. (1989): On the formulation of variational theorems involving volume constraints. Comput. Mech. 5: 337–344.

    Article  MATH  Google Scholar 

  • van den Bogert, P. A. J.;de Borst, R. (1994): On the behaviour of rubberlike materials in compression and shear. Arch. Appl. Mech. 64: 136–146

    MATH  Google Scholar 

  • van den Bogert, P. A. J.;de Borst, R.;Luiten, G. T.;Zeilmaker, J. (1991): Robust finite elements for 3D-analysis of rubber-like materials. Engng. Comput. 8: 3–17

    Google Scholar 

  • de Borst, R.;van den Bogert, P. A. J.;Zeilmaker, J. (1988): Modelling and analysis of rubberlike materials. HERON 33: 1–57

    Google Scholar 

  • Brezzi, F. (1974): On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrangian multipliers. RAIRO Anal. Numer. 8: 129–151

    MathSciNet  Google Scholar 

  • Brezzi, F.;Fortin, M. (1991): Mixed and Hybrid Finite Element Methods. Berlin, Heidelberg, New York: Springer

    MATH  Google Scholar 

  • Chang, T. Y. P.;Saleeb, A. F.;Li, G. (1991): Large strain analysis of rubber-like materials based on a perturbed Lagrangian variational principle. Comput. Mech. 8: 221–233

    Article  MATH  Google Scholar 

  • Chapelle, D.;Bathe, K.-J. (1993): The inf-sup test. Comp. & Struct. 47: 537–545

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, J. S.;Satyamurthy, K.;Hirschfelt, L. R. (1994): Consistent finite element procedures for nonlinear rubber elasticity with a higher order strain energy function. Comp. & Struct. 50: 715–727

    Article  MATH  Google Scholar 

  • Crouzeix, M.;Raviart, P.-A. (1973): Conforming and non conforming finite element methods for solving the stationary Stokes equations. RAIRO R3: 33–76

    MathSciNet  Google Scholar 

  • Engelman, M. S.;Sani, R. L.;Gresho, P. M.;Bercovier, M. (1982): Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements. Int. J. Numer. Meth. Fluids, 2: 25–42

    Article  MATH  MathSciNet  Google Scholar 

  • Fortin, M. (1981): Old and new finite elements for incompressible flows. Int. J. Numer. Meth. Fluids. 1: 347–364

    Article  MATH  MathSciNet  Google Scholar 

  • Girault, V.;Raviart, P.-A. (1986): Finite Element Methods for Navier-Stokes Equations. Berlin, Heidelberg, New York: Springer

    MATH  Google Scholar 

  • Le Tallec, P. (1981): Compatibility condition and existence results in discrete finite incompressible elasticity. Comp. Meth. Appl. Mech. Engrg. 27: 239–259

    Article  MATH  Google Scholar 

  • Le Tallec, P. (1994): Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P. G.; Lions, J. L. (eds.): Handbook of Numerical Analysis, vol. 3, Amsterdam: Elsevier

    Google Scholar 

  • Liu, C. H.;Hofstetter, G.;Mang, H. A. (1994): 3D finite element analysis of rubber-like materials at finite strains. Engng. Comput. 11: 111–128

    Google Scholar 

  • Miehe, C. (1993): Computation of isotropic tensor functions. Comm. Numer. Meth. Engrg. 9: 889–896

    Article  MATH  Google Scholar 

  • Miehe, C. (1994): Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int. J. Numer. Meth. Engrg 37: 1981–2004

    Article  MATH  MathSciNet  Google Scholar 

  • Ogden, R. W. (1984): Non-Linear Elastic Deformations. Chicester: Ellis Horwood-John Wiley

    Google Scholar 

  • Reddy, B. D.;Simo, J. C. (1995): Stability and convergence of a class of enhanced strain methods. SIAM J. Numer. Anal. 32: 1705–1728

    Article  MATH  MathSciNet  Google Scholar 

  • Seki, W.;Atluri, S. N. (1994): Analysis of strain localization in strainsoftening hyperelastic materials, using assumed stress hybrid elements. Comput. Mech. 14: 549–585

    Article  MATH  MathSciNet  Google Scholar 

  • Seki, W.;Atluri, S. N. (1995): On newly developed assumed stress finite element formulations for geometrically and materially nonlinear problems. Finite Elements in Analysis and Design 21: 75–110

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.;Armero, F. (1992): Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Meth. Engrg. 33: 1413–1449

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.;Armero, F.;Taylor, R. L. (1993): Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comp. Meth. Appl. Mech. Engrg. 110: 359–386

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.;Taylor, R. L. (1991): Quasi-incompressible finite elasticity in principle stretches. Continuum basis and numerical algorithms. Comp. Meth. Appl. Mech. Engrg. 85: 273–310

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.;Taylor, R. L.;Pister, K. S. (1985): Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comp. Meth. Appl. Mech. Engrg. 51: 177–208

    Article  MATH  MathSciNet  Google Scholar 

  • Stein, E.;Müller-Hoeppe, N. (1987): Finite element analysis and algorithms for large elastic strains. In: Pande, G. N.; Middleton, J. (eds.): Numerical Techniques for Engineering Analysis and Design: Proceedings of NUMETA 87, D4, pp. 1–8 Dordrecht: Nijhoff Publ.

    Google Scholar 

  • Sussman, T.;Bathe, K.-J. (1987): A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comp. & Struct. 26: 357–409.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 2 August, 1996

This work was supported by the German Research Foundation (DFG) under Grant No. Ste 238/35-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brink, U., Stein, E. On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Computational Mechanics 19, 105–119 (1996). https://doi.org/10.1007/BF02824849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02824849

Keywords

Navigation