Skip to main content
Log in

Extracts of monascusus purpureus beyond statins —Profile of efficacy and safety of the use of extracts of monascus purpureus

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Extracts of Monascus purpureus have always been considered a natural source of lovastatin, the precursor of the world’s largest selling class of drugs. In actual fact, the fungus contains many other substances (flavonoids, polyunsaturated fats, pyrrolinic compounds etc.) with a wide variety of other actions. The most recent studies have shown that it has an action on the glycemic metabolism, and on the mechanisms of adipogenesis, also an effects on the endothelium and on postprandial vasodilation. These effects are more extensive and complex than those of statins alone. And new strains of Monascus purpureus have recently been patented where the presence of statins is only one of the therapeutic components of the fungus. In particular, the increase in secondary components, such as flavonoids, which coincides with a more complex therapeutic action, probably making the new extracts of Monascus purpureus, the ideal candidate for the treatment of the metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Endo A. Monakolin K, A new hypocholesterolemic agent that specifically inhibits 3hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot 1980; 33(3): 334–336.

    PubMed  CAS  Google Scholar 

  2. Chang YN, Lin YC, Lee CC, et al. Effect of rice-glycerol complex medium on the production of lovastatin by Monascus rubber. Folia Microbiol (Praha)2002; 47 (6): 677–684.

    Article  CAS  Google Scholar 

  3. Su YC, Wang JJ, Lin TT, et al. Production of the secondary metabolites famma-aminobutyric acid and monakolin K by Monascus. J Ind Microbiol Biotechnol 2003; 30(11): 41–46.

    PubMed  CAS  Google Scholar 

  4. Kohama Y, Matsumoto S, Mimura T, et al. Isolation and identification of hypotensive principles in red-mold rice. Chem Pharm Bull (Tokyo) 1987; 35(6): 2484–2489.

    CAS  Google Scholar 

  5. Hsieh PS and Tai YH. Aqueous extract of Monascus purpureus M9011 prevents reverse fructose-induced hypertension in rats. J Agric Food Chem 2003; 51(14): 3945–3950.

    Article  PubMed  CAS  Google Scholar 

  6. Li C, Zhu Y, Wang Y, et al. Monascus purpureus-fermented rice (red yeast); a natural food product that lowers blood cholesterol in animal models of hypercholesterolemia. Nutrition Res 1998; 18: 71–81.

    Article  CAS  Google Scholar 

  7. Wang IK, Lin-Shiau SY, Chen PC, et al. Hypotriglyceridemic effect of Anka (a fermented rice product of Monascus sp.) in rats. J Agric Food Chem 2000; 48: 3183–3189.

    Article  PubMed  CAS  Google Scholar 

  8. Wei W, Li C, Wang Y, et al. Hypolipidemic and anti-atherogenic effects of long-term cholestin (Monascus purpureus-fer-mented rice, red yeast rice) in cholesterol fed rabbits. J Nutr Biochem 2003; 14(6): 314–318.

    Article  PubMed  CAS  Google Scholar 

  9. Xu B, Cheng W, Lu X. The effect of Xuezhikang on oxidation of low-density lipoprotein in vitro. Zhonghua Nei Ke Za Zhi 1999; 38(8): 520–522.

    PubMed  CAS  Google Scholar 

  10. Qi G, Zeng D, Liu L, et al. The effects of Xuezhikang on neointimal proliferation and C-myc gene expression after angioplasty in rabbits. Zhonghua Nei Ke Za Zhi 1999; 38(8): 514–516.

    PubMed  CAS  Google Scholar 

  11. Heber D, Yip I, Ashley JM, et al. Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Clin Nutr 1999: 69(2) 231–236.

    PubMed  CAS  Google Scholar 

  12. Wang J, Lu Z, Chi J, et al. Multicenter clinical trial of the serum lipid-lowering effects of a Monascus purpureus (red yeast) rice preparation from traditional Chinese medicine. Curr Ther Res1997; 58(12): 964–978.

    Article  Google Scholar 

  13. Lu Z, Kou W, Qiu Z, et al. Clinical observation of Xuezhikang on treatment of hyperlipidemia. Chin Circ J 1997; 12(1): 12–15.

    Google Scholar 

  14. Kou W, Lu ZL and Guo J. Effect of Xuezhikang on the treatment of primary hyperlipidemia. Zhonghua Nei Ke Za Zhi 1997; 36(8): 529–531.

    PubMed  CAS  Google Scholar 

  15. Yu P, Shen Z, Chi J, et al. Clinical observation of the effects of Xuezhikang on older primary hyperlipidemia patients. Chin J Geriatr 1996; 16(4): 206–208.

    Google Scholar 

  16. Deng J, Lei Y, Peng CH. Clinical observations of Xuezhikang on acute myocardial infarction patients with hyperlipoidemia. J Capital Med 2000; 7(1): 42–43.

    Google Scholar 

  17. Fu HF, Zhang B, Fu X. Effect of Xuezhikang on hyperlipodemia of chronic renal failure patients with peritoneal dialysis. Chin New Drug J 1998; 7(3): 211–213.

    Google Scholar 

  18. Fang YH and Li W. Effect of Xuezhikang on lipid metabolism and islet ßcell function in type II diabetic patients. J Capital Med 2000; 7(2): 44–45.

    Google Scholar 

  19. Liu Y, Zhao JC, Liu H. B-Mod ultrasonogram change of 276 cases of fatty liver patients treated by Xuezhikang. Zhonghua Nei Ke Za Zhi 1999; 38(8): 554–555.

    Google Scholar 

  20. Ross R. Atherosclerosis—an inflammatory disease. New Engl J Med 1999; 340: 115–126.

    Article  PubMed  CAS  Google Scholar 

  21. Toussoulis D, Davies G, Ambrose J, et al. Effects of lipids on thrombotic mechanism in atherosclerosis. Intl J Cardiol 2002; 86: 239–247.

    Article  Google Scholar 

  22. Epstein FH. Antioxidants and atherosclerotic heart disease. New Engl J Med 1997; 337(6): 408–416.

    Article  Google Scholar 

  23. Libby P, Rikder PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assesment. Am J Med 2004; 116 (Suppl 6A): 9S-16S.

    Article  PubMed  Google Scholar 

  24. Poon M, Zhang X, Dunsky KG, et al. Apolipoprotein (a) induces monocytes chemotactic activity in human vascular endothelial cells. Circulation 1997; 96(8): 2514–2519.

    PubMed  CAS  Google Scholar 

  25. Haider AW. Andreotti F, Thompson GR, et al. Serum lipoprotein (a) level is related to thrombin generation and spontaneous intermittent coronary occlusion in patients with acute myocardial infarction. Circulation 1996; 94(9): 2072–2076.

    PubMed  CAS  Google Scholar 

  26. Saltissi D, Morgan C, Rigby RJ, et al. Safety and efficacy of simvastatin in hypercholesterolemic patients undergoing chronic renal dialysis. Am J Kidney Dis 2002; 39(2): 293–290.

    Google Scholar 

  27. Galetta F, Sampietro T, Basta G, et al. Effects of simvastatin on blood levels of lipoprotein (a). Minerva Med 1995; 86(7 –8): 299–303.

    PubMed  CAS  Google Scholar 

  28. Liu L, Zhao SP, Cheng YC, et al. Xuezhikang decreases serum lipoprotein(a) and C-reactive protein concentrations in patients with coronary heart disease. Clin Chem 2003; 9(8): 1347–1352.

    Article  Google Scholar 

  29. Stein EA, Lane M, Laskarzewsi P. Comparison of statins in hypertriglyceridemia. Am J Cardiol 1998; 81 (4A): 66B-69B.

    Article  PubMed  CAS  Google Scholar 

  30. Zhao SP, Liu L, Cheng YC, et al. Effect of Xuezhiang, a cholestin extract, on reflecting postprandial trygliceridemia after a high-fat meal in patients with coronary heart disease. Atherosclerosis 2003; 168(2); 375–380.

    Article  PubMed  CAS  Google Scholar 

  31. Ceriello A, Quagliaro L, Piconi L, et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 2004; 53(3): 710–710.

    Article  Google Scholar 

  32. Zhao SP, Liu L, Cheng YC, et al. Xuezhikang, an extract of cholestin, protects endothelial function through anti-inflammatory and lipid-lowering mechanism in patients with coronary heart disease. Circulation 2004; 110(8): 915–920.

    Article  PubMed  Google Scholar 

  33. Li JJ, Hu SS, Fang CH, et al. Effects of Xuezhikang, an extract of cholestin, on lipid profile and C-reactive protein: a short-term time course study in patients with stable angina. Clin Chim Acta 2005; 352(1–2): 217–224.

    Article  PubMed  CAS  Google Scholar 

  34. Jeon T, Hwang SG, Hirai S, et al. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells. Life Sci 2004; 75 (26): 3195–3203.

    Article  PubMed  CAS  Google Scholar 

  35. Mortensen SA, Leth A, Agner E, et al. Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol Aspects Med 1997; 18 (Suppl): S137-S144.

    Article  PubMed  CAS  Google Scholar 

  36. Aberg F, Appelkvist A, Brojiersen A, et al. Gemfibrozil-induced decrease in serum ubiquinone and α- and γ-tocopherol levels in men with combined hyperlipidemia. Eur J Clin Invest 1998; 28(3): 235–242.

    Article  PubMed  CAS  Google Scholar 

  37. De Pineux G, Chariot P, Ammi-Said M, et al. Lipid-lowering drugs and mitochondrial function: effects of a HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol 1996; 42(3): 333–337.

    Article  Google Scholar 

  38. Yang HT, Lin Sh, Huang SY, et al. Acute administration of red yeast rice (Monascus purpureus) depletes tissue coenzyme Q(10) levels in ICR mice. Br J Nutr 2005; 93(1): 131–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianchi Antonio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonio, B. Extracts of monascusus purpureus beyond statins —Profile of efficacy and safety of the use of extracts of monascus purpureus. Chin. J. Integr. Med. 11, 309–313 (2005). https://doi.org/10.1007/BF02835797

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02835797

Key Words

Navigation