Skip to main content
Log in

Coupled scalar field equations for nonlinear wave modulations in dispersive media

  • Review
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A review of the generic features as well as the exact analytical solutions of a class of coupled scalar field equations governing nonlinear wave modulations in dispersive media like plasmas is presented. The equations are derivable from a Hamiltonian function which, in most cases, has the unusual property that the associated kinetic energy is not positive definite. To start with, a simplified derivation of the nonlinear Schrödinger equation for the coupling of an amplitude modulated high-frequency wave to a suitable low-frequency wave is discussed. Coupled sets of time-evolution equations like the Zakharov system, the Schrödinger-Boussinesq system and the Schrödinger-Korteweg-de Vries system are then introduced. For stationary propagation of the coupled waves, the latter two systems yield a generic system of a pair of coupled, ordinary differential equations with many free parameters. Different classes of exact analytical solutions of the generic system of equations are then reviewed. A comparison between the various sets of governing equations as well as between their exact analytical solutions is presented. Parameter regimes for the existence of different types of localized solutions are also discussed. The generic system of equations has a Hamiltonian structure, and is closely related to the well-known Hénon-Heiles system which has been extensively studied in the field of nonlinear dynamics. In fact, the associated generic Hamiltonian is identically the same as the generalized Hénon-Heiles Hamiltonian for the case of coupled waves in a magnetized plasma with negative group dispersion. When the group dispersion is positive, there exists a novel Hamiltonian which is structurally same as the generalized Hénon-Heiles Hamiltonian but with indefinite kinetic energy. The above correspondence between the two systems has been exploited to obtain the parameter regimes for the complete integrability of the coupled waves. There exists a direct one-to-one correspondence between the known integrable cases of the generic Hamiltonian and the stationary Hamiltonian flows associated with the only integrable nonlinear evolution equations (of polynomial and autonomous type) with a scale-weight of seven. The relevance of the generic system to other equations like the self-dual Yang-Mills equations, the complex Korteweg-de Vries equation and the complexified classical dynamical equations has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Hasegawa,Plasma instabilities and nonlinear effects (Springer, Berlin, 1975) p. 194

    Google Scholar 

  2. S G Thornhill and D ter Haar,Phys. Rep. 43, 43 (1978)

    Article  ADS  Google Scholar 

  3. M V Goldman,Rev. Mod. Phys. 56, 709 (1984)

    Article  ADS  Google Scholar 

  4. V E Zakharov,Sov. Phys. JETP 35, 908 (1972)

    ADS  Google Scholar 

  5. L I Rudakov,Sov. Phys. Dokl. 17, 1166 (1973)

    ADS  Google Scholar 

  6. A S Kingsep, L I Rudakov and R N Sudan,Phys. Rev. Lett. 31, 1482 (1973)

    Article  ADS  Google Scholar 

  7. K Nishikawa, Y C Lee and C S Liu,Comm. Plasma Phys. Control. Fusion 2, 63 (1975)

    Google Scholar 

  8. P A Robinson, D L Newman and M V Goldman,Phys. Rev. Lett. 61, 702 (1988)

    Article  ADS  Google Scholar 

  9. T Mikkelsen and H L Pécseli,Phys. Rev. Lett. 41, 951 (1978)

    Article  ADS  Google Scholar 

  10. K Nishikawa, H Hojo, K Mima and H Ikezi,Phys. Rev. Lett. 33, 148 (1974)

    Article  ADS  Google Scholar 

  11. H Ikezi, K Nishikawa and K Mima,J. Phys. Soc. Jpn. 37, 766 (1974)

    Article  ADS  Google Scholar 

  12. V G Makhankov,Phys. Lett. A50, 42 (1974)

    ADS  Google Scholar 

  13. Y L Bogomolov, I A Kol’chugina, A G Litvak and A M Sergeev,Phys. Lett. A91, 447 (1982)

    ADS  Google Scholar 

  14. F F Chen,Introduction to Plasma Physics and Controlled Fusion Plasma Physics (Plenum, New York, 1984) Vol. 1, p. 274

    Google Scholar 

  15. T H Stix,Waves in plasmas (American Institute of Physics, New York, 1992) p. 294

    Google Scholar 

  16. J Gibbons, S G Thornhill, M J Wardrop and D ter Haar,J. Plasma Phys. 17, 153 (1977)

    Article  ADS  Google Scholar 

  17. K Appert and J Vaclavik,Phys. Fluids 20, 1845 (1977)

    Article  ADS  MATH  Google Scholar 

  18. V I Karpman,Phys. Scr. 11, 263 (1975)

    Article  ADS  Google Scholar 

  19. A N Kaufman and L Stenflo,Phys. Scr. 11, 269 (1975)

    Article  ADS  Google Scholar 

  20. M Porkolab and M V Goldman,Phys. Fluids 19, 872 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. D ter Haar,Phys. Scr. T2/2, 522 (1982)

    Article  ADS  Google Scholar 

  22. H Lan and K Wang,Phys. Lett. A144, 244 (1990)

    ADS  Google Scholar 

  23. N N Rao,J. Plasma Phys. 39, 385 (1988)

    ADS  Google Scholar 

  24. N N Rao, R K Varma, P K Shukla and M Y Yu,Phys. Fluids 26, 2488 (1983)

    Article  ADS  MATH  Google Scholar 

  25. N N Rao,Phys. Rev. A37, 4846 (1988)

    ADS  Google Scholar 

  26. V A Kozlov, A G Litvak and E V Suvorov,Sov. Phys. JETP 49, 75 (1979)

    ADS  Google Scholar 

  27. S J Han,Phys. Fluids 24, 920 (1981)

    Article  ADS  MATH  Google Scholar 

  28. Y F Chang, M Tabor and J Weiss,J. Math. Phys. 23, 531 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M Lakshmanan and R Sahadevan,Phys. Rep. 224, 1 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. N N Rao,Phys. Lett. A202, 383 (1995)

    ADS  Google Scholar 

  31. N N Rao,J. Phys. A22, 4813 (1989)

    ADS  Google Scholar 

  32. N N Rao and D J Kaup,J. Phys. A24, L993 (1991)

  33. B Buti, N N Rao and S B Khadkikar,Phys. Scr. 34, 729 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. N N Rao, B Buti and S B Khadkikar,Pramana — J. Phys. 27, 497 (1986)

    Article  ADS  Google Scholar 

  35. R Rajaraman,Solitons and instantons (North Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  36. R Rajaraman,Phys. Rev. Lett. 42, 200 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  37. R Frieberg, T D Lee and A Sirlin,Phys. Rev. D13, 2739 (1976)

    ADS  Google Scholar 

  38. C Montonen,Nucl. Phys. B112, 349 (1976)

    Article  ADS  Google Scholar 

  39. X Huang, J Han, K Qian and W Qian,Phys. Lett. A182, 300 (1993)

    ADS  MathSciNet  Google Scholar 

  40. R Rajaraman and E Weinberg,Phys. Rev. D11, 2950 (1976)

    ADS  Google Scholar 

  41. L J Mason and G A J Sparling,Phys. Lett. A137, 29 (1989)

    ADS  MathSciNet  Google Scholar 

  42. S Chakravarthy, M J Ablowitz and P A Clarkson,Phys. Rev. Lett. 63, 1085 (1990)

    Article  ADS  Google Scholar 

  43. H Washimi and T Taniuti,Phys. Rev. Lett. 17, 966 (1966)

    Article  ADS  Google Scholar 

  44. R C Davidson,Methods in nonlinear plasma theory (Academic Press, New York, 1972) Ch. 2

    Google Scholar 

  45. K Mio, T Ogino and S Takeda,J. Phys. Soc. Jpn. 41, 2114 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  46. M Watanabe and K Nishikawa,J. Phys. Soc. Jpn. 41, 1029 (1976)

    Article  ADS  Google Scholar 

  47. R K Varma and N N Rao,Phys. Lett. A79, 311 (1980)

    ADS  Google Scholar 

  48. N N Rao and R K Varma,J. Plasma Phys. 27, 95 (1982)

    ADS  Google Scholar 

  49. P K Kaw, A Sen and E J Valeo,Phys. Lett. A110, 35 (1985)

    ADS  Google Scholar 

  50. C H Lin, J K Chao and C Z Cheng,Phys. Plasmas 2, 4195 (1995)

    Article  ADS  Google Scholar 

  51. H Schamel, M Y Yu and P K Shukla,Phys. Fluids 20, 1286 (1977)

    Article  ADS  Google Scholar 

  52. V E Zakharov,Sov. Phys. JETP 24, 455 (1967)

    ADS  Google Scholar 

  53. V L Malkin,Sov. Phys. JETP 63, 34 (1986)

    Google Scholar 

  54. A C Scott, F Y F Chu and D W McLaughlin,IEEE Plasma Sci. 61, 1443 (1973)

    MathSciNet  Google Scholar 

  55. N Yajima and M Oikawa,Prog. Theor. Phys. 56, 1719 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. D J Kaup,Phys. Rev. Lett. 59, 2063 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  57. L M Degtyarev, V G Nakhan’kov and L I Rudakov,Sov. Phys. JETP 40, 264 (1975)

    ADS  Google Scholar 

  58. Kh O Abdulleov, I L Bogolyubskij and V G Makhan’kov,Nucl. Fusion 15, 21 (1975)

    ADS  Google Scholar 

  59. N R Pereira, R N Sudan and J Denavit,Phys. Fluids 20, 271 (1977)

    Article  ADS  Google Scholar 

  60. N R Pereira,Phys. Fluids 20, 750 (1977)

    Article  ADS  Google Scholar 

  61. J G Wang, G L Payne, D F DuBois and H A Rose,Phys. Plasmas 2, 1129 (1995)

    Article  ADS  Google Scholar 

  62. H H Kuehl and C Y Zhang,Phys. Plasmas 2, 35 (1995)

    Article  ADS  Google Scholar 

  63. P Chen, J M Dawson, R W Huft and T Katsouleas,Phys. Rev. Lett. 54, 2343 (1985)

    Article  ADS  Google Scholar 

  64. M E Jones and R Keinings,IEEE Trans. Plasma Sci. PS-15, 203 (1987)

    Article  ADS  Google Scholar 

  65. V E Zakharov and A M Rubenchik,Sov. Phys. JETP 38, 494 (1974)

    ADS  Google Scholar 

  66. G Schmidt,Phys. Rev. Lett. 34, 724 (1975)

    Article  ADS  Google Scholar 

  67. B B Kadomtsev and V I Petviashvili,Sov. Phys. Dokl. 15, 539 (1970)

    ADS  MATH  Google Scholar 

  68. K Appert and J Vaclavik,Phys. Lett. A67, 39 (1978)

    ADS  MathSciNet  Google Scholar 

  69. M J Wardrop and D ter Haar,The stability of three-dimensional planar Langmuir solitons, Preprint # 70/78, Dept. of Theore. Phys., Univ. of Oxford (1978)

  70. Y Brodskii, A G Litvak, S I Nechuev and Y Z Slutsker,JETP Lett. 45, 217 (1987)

    ADS  Google Scholar 

  71. A J Lichtenberg and M A Lieberman,Regular and stochastic motion (Springer Verlag, Berlin, 1983) p. 23

    MATH  Google Scholar 

  72. M Hénon and C Heiles,Astron, J. 69, 73 (1964)

    Article  ADS  Google Scholar 

  73. G H Lunsford and J Ford,J. Math. Phys. 13, 700 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. M Hénon,Phys. Rev. B9, 1921 (1974)

    ADS  Google Scholar 

  75. H Flaschka,Phys. Rev. B9, 1924 (1974)

    ADS  MathSciNet  Google Scholar 

  76. M Toda and M Wadati,J. Phys. Soc. Jpn. 34, 18 (1973)

    Article  ADS  Google Scholar 

  77. P L Christiansen, J C Eilbeck, V J Enol’skii and Ju B Gaididei,Phys. Lett. A166, 129 (1992)

    ADS  Google Scholar 

  78. V Ravoson, L Gavrilov and R Caboz,J. Math. Phys. 34, 2385 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Hada T,Geophys. Res. Lett. 20, 2415 (1993)

    Article  ADS  Google Scholar 

  80. A P Fordy,Physica D52, 204 (1991)

    ADS  MathSciNet  Google Scholar 

  81. D Zwillinger,Handbook of differential equations, (Academic Press, Boston, 1989)

    MATH  Google Scholar 

  82. A Fujimoto and Y Watanabe,Math. Jpn. 28, 42 (1983)

    MathSciNet  Google Scholar 

  83. M J Ablowitz, A Ramani and H Segur,J. Math. Phys. 21, 715 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. M J Ablowitz, A Ramani and H Segur,J. Math. Phys. 21, 1006 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. A Ramani, B Dorrizzi and B Grammaticos,Phys. Rev. Lett. 49, 1539 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  86. N Ercolani and E D Siggia,Phys. Lett. A119, 112 (1986)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, N.N. Coupled scalar field equations for nonlinear wave modulations in dispersive media. Pramana - J. Phys. 46, 161–202 (1996). https://doi.org/10.1007/BF02846945

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02846945

Keywords

PACS Nos

Navigation