Skip to main content
Log in

Effect of reinforcement on the aging response of cast 6061 Al-Al2O3 particulate composites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of 10 and 15 vol pct alumina particulate addition on the age hardening behavior of cast 6061 Al-matrix composites was studied using microhardness, electrical resistivity, differential scanning calorimetry, and transmission electron microscopy (TEM). It was found that the kinetics of precipitation in the matrix alloy are significantly accelerated due to the presence of reinforcements. This acceleration is attributable to the decrease in incubation time required for nucleation and the increase in solute diffusivity and hence precipitate growth rate resulting from the increase in the matrix dislocation density due to coefficient of thermal expansion (CTE) mismatch between the matrix and the reinforcements. The relative amounts of the various phases were also observed to be affected by reinforcement addition. Increasing reinforcement content decreased the volume fractions of the Β’ and Β precipitates while increasing the volume fraction of the GP-I zones. The volume fraction of silicon clusters (which are the precursors to GP zones in 6061 Al) formed during postsolution treatment aging was found to decrease with increasing reinforcement addition. The above effects have been discussed with respect to the associated mechanisms, and plausible explanations have been offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.G. Nieh and R.F. Karlak:Scripta Metall., 1984, vol. 18, p. 25.

    Article  CAS  Google Scholar 

  2. R.J. Arsenault and R.M. Fisher:Scripta Metall., 1983, vol. 17, p. 67.

    Article  CAS  Google Scholar 

  3. I. Dutta, D.L. Bourell, and D. Latimer:J. Comp. Matl., 1988, vol. 22, p. 829.

    Article  CAS  Google Scholar 

  4. T. Christman, A. Needleman, S. Nutt, and S. Suresh:Mater. Sci. Eng., 1989, vol. A107, p. 49.

    CAS  Google Scholar 

  5. I. Dutta and D.L. Bourell:Mater. Sci. Eng., 1989, vol. Al 12, p. 67.

    Google Scholar 

  6. T. Christman and S. Suresh:Acta Metall., 1988, vol. 36, p. 1691.

    Article  CAS  Google Scholar 

  7. J.M. Papazian:Metall. Trans. A, 1988, vol. 19A, pp. 2945–53.

    CAS  Google Scholar 

  8. K.K. Chawla and M. Metzger:J. Mater. Sci., 1972, vol. 7, p. 34.

    Article  CAS  Google Scholar 

  9. M. Vogelsang, R.J. Arsenault, and R.M. Fisher:Metall. Trans. A, 1986, vol. 17A, pp. 379–89.

    CAS  Google Scholar 

  10. R.F. Arsenault and N. Shi:Mater. Sci. Eng., 1986, vol. 81, p. 175.

    Article  CAS  Google Scholar 

  11. I. Dutta and D.L. Bourell:Acta Metall., 1990, vol. 38, p. 2041.

    Article  CAS  Google Scholar 

  12. C.M. Friend and S.D. Luxton:J. Mater. Sci., 1988, vol. 23, p. 3173.

    Article  CAS  Google Scholar 

  13. S. Suresh, T. Christman, and Y. Sugimura:Scripta Metall., 1989, vol. 23, p. 1599.

    Article  CAS  Google Scholar 

  14. G. Duopuoy: inProc. 3rd Int. Conf. on HVEM, P.R. Swann, C.J. Humphreys, and M.J. Goringe, eds., Academic Press, London, 1974, p. 427.

    Google Scholar 

  15. K.J. Hale and M. Henderson-Brown:Micron, 1973, vol. 4, p. 69.

    Google Scholar 

  16. I. Dutta and S.M. Allen:J. Mater. Sci. Lett., 1991, vol. 10, p. 323.

    Article  CAS  Google Scholar 

  17. E. Ozawa and H. Kimura:Mater. Sci. Eng., 1971, vol. 8, p. 327.

    Article  CAS  Google Scholar 

  18. I. Kovacs, J. Lendvai, and E. Nagy:Acta Metall., 1972, vol. 20, p. 975.

    Article  CAS  Google Scholar 

  19. S. Ceresara, E. Di Russo, P. Fiorini, and A. Giarda:Mater. Sci. Eng., 1969-1970, vol. 5, p. 220.

    Google Scholar 

  20. W.F. Smith:Metall. Trans., 1973, vol. 4, pp. 2435–40.

    Article  CAS  Google Scholar 

  21. H. Cordier and W. Gruhl:Z. Metallkd., 1965, vol. 56, p. 669.

    CAS  Google Scholar 

  22. H.J. Rack and R.W. Krenzer:Metall. Trans. A, 1977, vol. 8A, pp. 335–46.

    CAS  Google Scholar 

  23. G. Thomas:J. Inst. Met., 1961–62, vol. 90, p. 57.

    CAS  Google Scholar 

  24. D.W. Pashley, J.W. Rhodes, and A. Sendorek:J. Inst. Met., 1966, vol. 94, p. 41.

    CAS  Google Scholar 

  25. Y. Adda and J. Philibert:La Diffusion dans les Solides, University of France Press, Paris, 1966, vol. II, p. 1151.

    Google Scholar 

  26. M.H. Jacobs:Phil. Mag. 1972, vol. 26, p. 1.

    Article  CAS  Google Scholar 

  27. P.A. Beaven, A.P. Davidson, and E.P. Butler: inProc. Int. Conf. on Solid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, 1982, p. 661.

  28. A.A. Frost and R.G. Pearson:Kinetics and Mechanisms, John Wiley and Sons, New York, NY, 1961, p. 77.

    Google Scholar 

  29. P.N. Adler and R. DeIasi:Metall. Trans. A, 1977, vol. 8A, pp. 1185–90.

    CAS  Google Scholar 

  30. S.H. Lo, S. Dionne, G. Carpenter, and D. Zimcick: inInterfaces in Metal-Ceramic Composites, R.Y. Lin, R.J. Arsenault, G.P. Martins, and S.G. Fishman, eds., TMS-AIME, 1989, p. 165.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly a Graduate Student, Naval Postgraduate School.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, I., Allen, S.M. & Hafley, J.L. Effect of reinforcement on the aging response of cast 6061 Al-Al2O3 particulate composites. Metall Trans A 22, 2553–2563 (1991). https://doi.org/10.1007/BF02851349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02851349

Keywords

Navigation