Skip to main content
Log in

Mathematical modelling of ecological succesion—a review

Folia Geobotanica et Phytotaxonomica Aims and scope Submit manuscript

Abstract

The present review gives an account of the applicability of mathematical modelling in ecological succession studies. The ability of particular model types to solve problems of both theory and management is discussed. The Markovian models are found to be useful for short term predictions, but of very limited value for theoretical considerations. Finally, the predictability of successional pathways is discussed. It is argued that the less we understand about processes in vegetation dynamics, the more we will see the course of succession as random and unpredictable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Acevedo M. F. (1981): On Horn's Markovian model of forest dynamics with particular reference to tropical forest.—Theor. Pop. Biol. 19: 230–250.

    Article  Google Scholar 

  • Allen T. F. H. etStarr T. B. (1982): Hierarchy: perspectives for ecological complexity.— Chicago.

  • Anderson M. C. (1966): Ecological groupings of plants.—Nature 212: 54–56.

    Article  Google Scholar 

  • Austin M. P. (1980): An exploratory analysis of grassland dynamics: an example of a lawn succession.—Vegetatio 43: 87–94.

    Article  Google Scholar 

  • Austin M. P. (1981): Permanent quadrats: An interface for theory and practice.—Vegetatio 46: 1–10.

    Article  Google Scholar 

  • Bartos D. L. (1973): A dynamic model of aspen succession.—In: IUFRO Biomass Studies, University of Maine Press, Orono, p. 11–25.

    Google Scholar 

  • Bartos D. L. (1978): Modeling plant succession in aspen ecosystems.—In: Proc. First Intern. Rangeland Congr., p. 208–211.

  • Bellefleur P. (1981): Markow models of forest-type secondary succession in coastal British Columbia.—Can. J. For. Res. 11: 18–29.

    Article  Google Scholar 

  • Binkley C. S. (1980): Is succession in hardwood forests a stationary Markov process?—Forest Sci. 26: 566–570.

    Google Scholar 

  • Bledsoe L. J. etVan Dyne G. M. (1971): A compartment model simulation of secondary succession. —In:Patten B. C. (ed.): System analysis and simulation in ecology.—New York and London, p. 479–511.

  • Botkin D. B. (1981): Causality and succession.—In:West D. C., Shugart H. H. etBotkin D. B. [eds], Forest succession.—New York, Heidelberg, Berlin, p. 36–55.

  • Botkin D. B., Janak J. F. etWallis J. R. (1971): Some ecological consequences of a computer model of forest growth.—J. Ecol. 60: 849–872.

    Google Scholar 

  • Brannan J. R., Reneke J. A. etWaide J. (1984): A diffusion model of forest succession.— Technical Report No. 442, Clemson University.

  • Cattelino P. J., Noble I. R., Slatyer R. O. etKessell S. R. (1979): Predicting the multiple pathways of plant succession.—Environ. Manag. 3: 41–50.

    Article  Google Scholar 

  • Clements F. E. (1916): Plant succession; analysis of the development of vegetation.—Carn. Inst. Wash. 242: 1–512.

    Google Scholar 

  • Clements F. E. (1936): Nature and structure of the climax.—J. Ecol. 24: 552–584.

    Google Scholar 

  • Connell J. H. etSlatyer R. O. (1977): Mechanisms of succession in natural communities and their role in community stability and organization.—Amer. Natur. 111: 1119–1144.

    Article  Google Scholar 

  • Cooke D. (1981): A. Markov chain model of plant succession.—In:Hiorns R. W. etCooke D. [eds.], Mathematical theory of the dynamics of biological populations II., p. 231–247.

  • Culver D. C. (1981): On using Horn's Markov succession model.—Amer. Natur. 117: 572–574.

    Article  Google Scholar 

  • Czárán T. (1984): A simulation model for generating patterns of sessile populations.—Abstracta Botanica 8: 1–13.

    Google Scholar 

  • Dale V. H., Hemstrom M. etFranklin J. (1986): Modeling the long-term effects of disturbances on forest succession, Olympic Peninsula, Washington.—Can. J. For. Res. 16: 56–67.

    Article  Google Scholar 

  • Debusche M. et al. (1977): An account of the use of a transition matrix.—Agro-Ecosystems 3: 81–92.

    Article  Google Scholar 

  • Dostálková I., Kindlmann P. etRejmánek M. (1984): Simulation of species replacement on environmental gradient in the course of ecological succession.—Ecol. Modelling 26: 45–50.

    Article  Google Scholar 

  • Doyle T. W. (1981): The role of disturbance in the gap dynamics of a montane rain forest: an application of a tropical forest succession model.—In:West D. C., Shugart H. H. etBotkin D. B. [eds.], Forest succession.—New York, Heidelberg, Berlin, p. 56–73.

  • Dudek A. etEk A. R. (1980): A bibliography of worldwide literature on individual tree based forest stand growth models.—Staff Paper Series No. 12, Department of Forest Resources, Univ. of Minnesota.

  • Dvořák I., Kubinová L. etŠiška J. (1985): Time hierarchy in oscilating metabolic systems.— In:Capasso V., Grosso E. etPaveri-Fontana S. L. [eds], Mathematics in biology and medicine. Proceedings, Bari 1983.—Berlin, Heidelberg, New York, Tokyo, p. 300–305. [Lecture Notes in Biomathematics 57].

  • El-Bayoumi M. A., Shugart H. H. etWein R. W. (1984): Modelling succession of the eastern Canadian mixedwood forest.—Ecol. Modelling 21: 175–198.

    Article  Google Scholar 

  • Emanuel W. R., Shugart H. H. etWest D. C. (1978): Spectral analysis of forest dynamics: the effect of perturbations on long-term dynamics.—In:Shugart H. H. [ed.]: Time series and ecological processes.—Philadelphia, p. 193–207.

  • Emanuel W. R., West D. C. etShugart H. H. (1978): Spectral analysis of forest model time series.—Ecol. Modelling, 4: 313–326.

    Article  Google Scholar 

  • Engeberg J. etBoyarsky L. L. (1979): The noncybernetic nature of ecosystems.—Amer. Natur. 114: 317–324.

    Article  Google Scholar 

  • Enright N. etOgden J. (1979): Application of transition matrix models in forest dynamics:Araucaria in Papua New Guinea andNothofagus in New Zealand.—Aust. J. Ecol. 4: 3–23.

    Article  Google Scholar 

  • Finegan B. (1984): Forest succession.—Nature, 311: 109–114.

    Article  Google Scholar 

  • Finn J. T. (1985): Analysis of land use change statistics through the use of Markov chains.— 1985 Summer Computer Simulation Conference, Chicago, p. sep. 1–8.

  • Galickij V. V. etKrylov A. A. (1984): Modelirovanije dinamiki rastitelnych soobščestv. Dvumernaja model odnovidovovo odnovozrastnovo soobščestva. [Modelling of plant community dynamics. Model of one species even-aged community on the plane.]—Puščino.

  • Gauch H. G., Chase G. B. etWhittaker R. H. (1974): Ordination of vegetation samples by gaussian species distributions.—Ecology 55: 1382–1390.

    Article  Google Scholar 

  • Gleason H. A. (1926): The individualistic concept of the plant association.—Torrey Bot. Club. Bull. 53: 7–26.

    Article  Google Scholar 

  • Godron M. etLepart J. (1975): Sur la representation de la dynamique de la vegetation au moyen de matrices de succession.—In:Schmidt W. [ed.], Sukzessionsforschung.—Vaduz., p. 269–287.

  • Gutierrez L. T. etFey W. R. (1980); Ecosystem succession. A general hypothesis and a test model of a grassland.—Cambridge (Massachusetts) and London (England).

  • Hahn J. T. etLeary R. A. (1974): On paper byH. H. Shugart, T. R. Crow etJ. M. Hett, Forest succession models: A rationale and methodology for modeling forest succession over large regions. Forest Sci., 19: 203–212, 1973.—Forest Sci. 20: 212.

    Google Scholar 

  • Hemstrom M. etAdams V. D. (1982): Modeling long-term forest succession in the Pacific Northwest. —In:Means J. E. [ed.], Forest succession and stand development research in the Northwest.—Proc. Symp. 1981, Corvallis, Oregon, Forest Res. Lab., Oregon State Univ., p. 14–23.

  • Hobbs R. J. (1984): Markov models in the study of post-fire succession in heathland communities. —Vegetatio 56: 17–30.

    Article  Google Scholar 

  • Hobbs R. J. etLegg C. J. (1984): Markov models and initial floristic composition in heathland vegetation dynamics.—Vegetatio 56: 31–43.

    Article  Google Scholar 

  • Horn H. S. (1975a): Forest succession.—Sci. American 232: 89–98.

    Article  Google Scholar 

  • Horn H. S. (1975b): Markovian processes of forest succession.—In:Cody M. L. etDiamond J. M. [eds.], Ecology and the evolution of communities. Cambridge (Massachusetts) and London (England), p. 196–211.

  • Horn H. S. (1976): Succession.—In:May R. M. [ed.], Theoretical ecology.—Toronto, p. 187–204.

  • Hulst R. van (1979a): On the dynamics of vegetation: succession in model communities.— Vegetatio 39: 85–96.

    Article  Google Scholar 

  • Hulst R. van (1979b): On the dynamics of vegetation: Markov chains as models of succession.— Vegetatio 40: 3–14.

    Article  Google Scholar 

  • Hulst R. van (1980): Vegetation dynamics or ecosystem dynamics: dynamic sufficiency in succession theory.—Vegetatio 43: 147–151.

    Article  Google Scholar 

  • Innis G. S. (1978) [ed.]: Grassland simulation model.—New York, Heidelberg, Berlin. [Ecol. Studies 26].

  • Innis G. (1979): A spiral approach to ecosystem simulation, I.—In:Innis G. S. etO'Neill R. V. [eds.], Systems analysis of ecosystems.—Statist. Ecol. Ser. 9, Maryland, p. 211–386.

  • Janos D. P. (1980): Mycorrhizal influence tropical succession.—Biotropica 12 (2, suppl., Tropical succession.): 56–64.

    Article  Google Scholar 

  • Juhász-Nagy P. etPodani J. (1983): Information theory methods for the study of spatial processes and succession.—Vegetatio 51: 129–140.

    Article  Google Scholar 

  • Jukola-Sulonen E. L. (1983): Vegetation succession of abandoned hay fields in central Finland. A quantitative approach.—Communicat. Inst. Fores. Fenniae 112: 1–85.

    Google Scholar 

  • Kauppi P., Hari P. etKellomäki S. (1978): A discrete time model for succession of ground cover communities after clear cutting.—Oikos 30: 100–105.

    Article  Google Scholar 

  • Kawabata Z. etKurihara Y. (1978a): Computer simulation study on the relationships between the total system and subsystems in the early stages of succession of the aquatic microcosm.— Sci. Rep. Tohoku Univ. Ser. IV (Biol.) 37: 179–204.

    Google Scholar 

  • Kawabata Z. etKurihara Y. (1978b): Computer simulation study on the nature of the steady state of the aquatic microcosm.—Sci. Rep, Tohoku Univ. Ser. IV, 37: 205–218.

    Google Scholar 

  • Kellomäki S., Väisänen E., Kauppi P. etHari P. (1977): Production of structural matter by a plant community in successional environment.—Silva Fennica 11: 276–283.

    Google Scholar 

  • Kercher J. R. etAxelrod M. C. (1981): SILVA: A model for forecasting the effects of SO2 pollution on growth and succession in a western coniferous forest.—UCRL-53109, Lawrence Livermore Natl. Laboratory, Livermore, California.

    Google Scholar 

  • Kercher J. R. etAxelrod M. C. (1984a): A process model of fire ecology and succession in a mixed-conifer forest.—Ecology 65: 1725–1742.

    Article  Google Scholar 

  • Kercher J. R. etAxelrod M. C. (1984b): Analysis of SILVA: a model for forecasting the effects of SO2 pollution and fire on western coniferous forests.—Ecol. Model. 23: 165–184.

    Article  CAS  Google Scholar 

  • Kessel R. S. (1979): Gradient modelling: resource and fire management.—New York, Heidelberg et Berlin.

  • Kessell S. R. etPotter M. W. (1980): A quantitative succession model for nine Montana forest communitities.—Environ. Manage. 4: 227–240.

    Article  Google Scholar 

  • Kovář P. etLepš J. (1986): Ruderal communities of the railway station Ĉeská Třebová (Eastern Bohemia, Czechoslovakia)—note on the application of classical and numerical methods of classification.—Preslia 58: 141–163.

    Google Scholar 

  • Krahulec F., Lepŝ J. etRauch O. (1980): Vegetation of the Rozkoŝ reservoir near Ĉeská Skalice (East Bohemia). I. The vegetation development during the first five years after its filling.— Folia Geobot. Phytotax. 15: 324–362.

    Google Scholar 

  • Larson J. S., Mueller A. J. etMacConnell W. P. (1980): A model of natural and man-induced changes in open freshwater wetlands on the Massachusetts coastal plain.—J. Appl. Ecology 17: 667–673.

    Article  Google Scholar 

  • Leak W. B. (1970): Successional change in northern hardwoods predicted by birth and death simulation.—Ecology, 51: 795–801.

    Article  Google Scholar 

  • Legg C. J. (1980): A Markovian approach to the study of heath vegetation dynamics.—Bull. Ecol. 11: 393–404.

    Google Scholar 

  • Lepŝ J. (1983): Matematické modelování dynamiky ekosystém⫲ a jejich složek. [Mathematical modelling of ecosystem dynamics.]—Ms. [Thesis, Dept. of Botany, Charles University, Praha].

    Google Scholar 

  • Lepŝ J. etKindlmann P. (1987): Models of the development of spatial pattern of an even-aged plant population over time.—Ecol. Modelling 39: 45–57.

    Article  Google Scholar 

  • Lepŝ J. etPrach K (1981): A simple mathematical model of the secondary succession of shrubs.— Folia Geobot. Phytotax. 16: 61–72.

    Google Scholar 

  • Leslie P. H. (1945): On the use of matrices in certain population mathematics.—Biometrika 33: 183–212.

    Article  Google Scholar 

  • Lippe E., De Smidt J. T. etGlen-Lewin D. C. (1985): Markov models and succession: a test from a heathland in the Netherlands.—J. Ecol. 73: 775–791.

    Article  Google Scholar 

  • Logofet D. O. etAlexandrov G. A. (1984): Modelling of matter cycle in a mesotrophic bog ecosystem. II. Dynamic model and ecological succession.—Ecol. Modelling 21: 259–276.

    Article  Google Scholar 

  • Łomnicki A. (1978): Przygody ekologów i ewolucjonistów w krainie superorganizmów. [Adventures of ecologists and evolutionists in the land of superorganisms].—Wiad. Ekolog. 24: 249–259.

    Google Scholar 

  • Maarel E. van der (1979): Transformation of cover-abundance values in phytosociology and its effects on community similarity.—Vegetatio 39: 97–114.

    Article  Google Scholar 

  • MacArthur R. H. (1958): A note on stationary age distributions is single-species populations and stationary species populations in a community.—Ecology 39: 146–147.

    Article  Google Scholar 

  • Malanson G. P. (1984): Linked Leslie matrices for the simulation of succession.—Ecol. Modelling 21: 13–20.

    Article  Google Scholar 

  • Michajlov V. V. etNorin B. N. (1982): Opyt matematičeskovo modelirovanija dinamiki fitocenozov. [An attempt of mathematical modelling of phytocoenoses successions.].—Žur. Obšč. Biol. 43: 596–603.

    Google Scholar 

  • Mielke D. L., Shugart H. H. etD. C. West (1978): A stand model for upland forests of southern Arkansas.—ORNL/TM-6225. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Miles J. (1979): Vegetation dynamics.—London. [Outline Studies in Ecology].

  • Miles, J., French D. D., Xu Zhen-Bang etChen Ling-Zhi (1985): Transition matrix models of succession in a stand of mixed broadleaved—Pinus koraiensis forest in Changbaishan, Kirin province, North-east China.—J. Environ. Manag. 20: 357–375.

    Google Scholar 

  • Moravec J. (1969): Succession of plant communities and soil development.—Folia Geobot. Phytotax. 4: 133–164.

    Google Scholar 

  • Munro D. (1974): Forest growth models—a prognosis.—In:Fires J. [ed.], Growth models for tree and stand simulation.—Royal College of Forestry, Stockholm, p. 7–21.

    Google Scholar 

  • Ogden J. (1983): Community matrix model predictions of future forest composition at Russel State Forest.—New Zealand J. Ecol. 6: 71–77.

    Google Scholar 

  • Patten B. C. etOdum E. P. (1981): The cybernetic nature of ecosystems.—Amer. Naturalist 118: 886–895.

    Article  Google Scholar 

  • Pfister R. D. (1982): Designing succession models to meet management needs.—In:Means J. E. [ed.], Forest succession and stand development research in the Northwest.—Proc. Symp., 1981, Corvallis, Oregon, Forest Res. Lab., Oregon State Univ., p. 44–53.

  • Phipps R. L. (1979): Simulation of wetlands forest vegetation dynamics.—Ecol. Modelling, 7: 257–288.

    Article  Google Scholar 

  • Phipps R. L. etApplegate L. H. (1983): Simulation of management alternatives in wetland forest.—In:Jorgensen S. E. etMitsch W. J. [eds.], Application of ecological modelling in environmental management, Part B.—Amsterdam, p. 311–339.

  • Redetzke K. A. etVan Dyne G. M. (1976): A matrix model of a rangeland grazing system.— J. Range Mgmt. 29: 425–430.

    Article  Google Scholar 

  • Redetzke K. A. etVan Dyne G. M. (1979): Data based, empirical, dynamic matrix modeling of rangeland grazing systems.—In:French N. R. [ed.], Perspectives in grassland ecology.— New York, p. 157–172.

  • Rejmánek M. (1984): Perturbation-dependent coexistence and species diversity in ecosystems.— In:Schuster P. [ed.], Stochastic phenomena and chaotic behaviour in complex systems.— Berlin, Heidelberg, New York, Tokyo, p. 220–230.

  • Roberts F. S. (1976): Discrete mathematical models with applications to social, biological, and environmental problems.—Englewood Cliffs.

  • Rozenberg G. S. (1980): Verojatnostnyj podchod k izuĉeniju vremennoj struktury rastitelnovo pokrova. [A probability method of an approach to the investigation of time structure of the plant cover.]—Žur. Obŝĉ. Biol. 41: 372–385.

    Google Scholar 

  • Rozenberg G. S. (1984): Kvaziimitacionnoje modelirovanije pri issledovaniji suckessii ekosistem. [Quasiimitation modelling in study of ecosystem succession.]—In: Simulace systém⫲ v biologii a medicínê. [Simulation of systems in biology and medicine.]—Praha, Paper No. 411.

  • Samollov Ju. I. etTarchova T. N. (1985): Analiz sukcessionnoj mozaiki napoĉvennovo pokrova s ispolzo vanijem markovskich modelej. [Markovian models in the analysis of ground cover successional pattern].—Bot. Žur. 70: 12–22.

    Google Scholar 

  • Shugart H. H. (1984): A theory of forest dynamics.—New York, Berlin, Heidelberg, Tokyo.

  • Shugart H. H., Chow T. R. etHett J. M. (1973): Forest succession models: a rationale and methodology for modeling forest succession over large regions.—Forest Sci. 19: 203–212.

    Google Scholar 

  • Shugart H. H., Hopkins M. S., Burgess I. P. etMortlock A. T. (1981): The development of a succession model for subtropical rain forest and its application to assess the effects of timber harvest at Wiangaree State Forest, New South Wales.—J. Environ. Mgmt. 11: 243–265.

    Google Scholar 

  • Shugart H. H., McLaughlin S. B. etWest D. C. (1980): Forest models: their development and potential applications for air pollution effects research.—In: Proc. Symp. on effects of air pollutants on Mediterranean and temperate forest ecosystems, June, 1980, Riverside, California, USA., Gen. Tech. Rep. PSW-43, p. 203–214.

  • Shugart H. H. etNoble I. R. (1981): A computer model of succession and fire response of the high altigtudeEucalyptus forest of the Brindabella Range, Australian Capital Territory.— Austr. J. Ecol. 6: 149–164.

    Article  Google Scholar 

  • Shugart H. H. etWest D. C. (1977): Development of an deciduous forest simulation model and its application to assessment of the impact of the chestnut blight.—J. Environ. Manag. 5: 161–179.

    Google Scholar 

  • Shugart H. H. etWest D. C. (1980): Forest succession models.—Bio-Science 30: 308–313.

    Google Scholar 

  • Shugart H. H. etWest D. C. (1981): Long-term dynamics of forest ecosystem.—Amer. Sci. 69: 647–652.

    Google Scholar 

  • Sklar F. H., Costanza R. etDay J. W. (1985): Dynamic spatial simulation modeling of coastal wetland habitat succession.—Ecol. Modelling 29: 261–281.

    Article  Google Scholar 

  • Stage A. R. etFerguson D. E. (1982): Regeneration modeling as a component of forest succession simulation.—In:Means J. E. [ed.], Forest succession and stand development research in the Northwest. Proc. Symp., 1981, Corvallis, Oregon, Forest Res. Lab., Oregon State Univ., p. 24–30.

  • Steinhorst R. K., Morgan P. etNeuenschwander L. F. (1985): A stochastic-deterministic simulation model of shrub succession.—Ecol. Modelling 29: 35–55.

    Article  Google Scholar 

  • Straŝkraba M. (1976): Development of an analytical phytoplankton model with parameters empirically related to dominant controlling variables.—In:Glaser R., Unger K. etKoch K.: Umweltbiophysik.—Akad. Vrlg. Berlin 1976., Abhandl. Akad. Wissensch. DDR 1974, p. 33–65.

  • Straŝkraba M. (1980): Cybernetic categories of ecosystem dynamics.—J. Int. Soc. Ecol. Modelling 2: 81–96.

    Google Scholar 

  • Stephens G. R. etWaggoner P. E. (1970): The forest anticipated from 40 years of natural transtion in mixed hardwoods.—Bull. Connecticut Agricultural Experiment Station, New Haven. 707: 4–58.

    Google Scholar 

  • Stephens G. R. etWaggoner P. E. (1980): A half century of natural transitions in mixed hardwood forests.—Bull. Connecticut Agricultural Experiment Station, New Haven. 783: 3–41.

    Google Scholar 

  • Tilman D. (1982): Resource competition and community structure.—Princeton.

  • Usher M. B. (1979): Markovian approaches to ecological succession.—J. Anim. Ecol. 48: 413–426.

    Article  Google Scholar 

  • Usher M. B. (1981): Modelling ecological succession, with particular reference to Markovian models.—Vegetatio 46: 11–18.

    Article  Google Scholar 

  • Van Hecke P., Behaenghe T. J. etImpens I. (1984): A Markovian approach to the dynamics of fertilized permanent grasslands.—Acta Oecol.—Oecol. Appl. 5: 113–126.

    Google Scholar 

  • Waggoner P. E. etStephens G. R. (1970): Transition probabilities for a forest.—Naturo 225: 1160–1161.

    Article  CAS  Google Scholar 

  • Watt A. S. (1947): Pattern and process in the plant community.—J. Ecol. 35: 1–22.

    Article  Google Scholar 

  • Weinstein D. A. etShugart H. H. (1983): Ecological modeling of landscape dynamics.— In:Mooney H. A. etGodron M. [eds.], Disturbance and ecosystems.—Berlin, p. 29–45.

  • West P. W. (1981): Simulation of diameter growth and mortality in regrowth eucalypt forest of southern Tasmania.—Forest Sci. 27: 603–616.

    Google Scholar 

  • West P. W. (1983): Accuracy and precision of volume estimates from a simulation model for regrowth eucalypt forest.—Aust. For. Res. 13: 183–188.

    Google Scholar 

  • West D. C., Shugart H. H. etBotkin D. B. [eds.] (1981): Forest succession. Concepts and application. —New York, Heidelberg, Berlin.

  • West D. C., Smith T. M., Weinstein D. A., etShugart H. H. (1982): Forest succession models and the ecological and management implications.—In:Means J. E. [ed.], Forest succession and stand development research in the Northwest. Proc. Symp., 1981, Corvallis, Oregon, Forest Res. Lab., Oregon State University, p. 5–13.

  • Whittaker R. H. (1970): Communities and ecosystems.—London and Toronto.

  • Williams W. T. et al. (1969): Studies in the numerical analysis of complex rain-forest communities. IV. A method for the elucidation of small-scale forest pattern.—J. Ecol. 57: 635–645.

    Article  Google Scholar 

  • Woods K. E. etWhittaker R. H. (1981): Canopy-understory interaction and the internal dynamics of mature hardwood and hemlock-hardwood forests.—In:West D. C., Shugart H. H. etBotkin D. B. [eds.], Forest succession.—Berlin, p. 305–323.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepš, J. Mathematical modelling of ecological succesion—a review. Folia geobot. phytotax. 23, 79–94 (1988). https://doi.org/10.1007/BF02853297

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02853297

Keywords

Navigation