Skip to main content
Log in

Cyanobacterial biofertilizers in rice agriculture

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Floodwater and the surface of soil provide the sites for aerobic phototrophic nitrogen (N) fixation by free-living cyanobacteria and theAzolla-Anabaena symbiotic N2-fixing complex. Free-living cyanobacteria, the majority of which are heterocystous and nitrogen fixing, contribute an average of 20–30 kg N ha-1, whereas the value is up to 600 kg ha-1 for theAzollaAnabaena system (the most beneficial cyanobacterial symbiosis from an agronomic point of view). Synthesis and excretion of organic/growth-promoting substances by the cyanobacteria are also on record. During the last two or three decades a large number of studies have been published on the various important fundamental and applied aspects of both kinds of cyanobacterial biofertilizers (the free-living cyanobacteria and the cyanobacteriumAnabaena azollae in symbiotic association with the water fernAzolla), which include strain identification, isolation, purification, and culture; laboratory analyses of their N2-fixing activity and related physiology, biochemistry, and energetics; and identification of the structure and regulation of nitrogenfixing (nif) genes and nitrogenase enzyme. The symbiotic biology of theAzolla-Anabaena mutualistic N2-fixing complex has been clarified. In free-living cyanobacterial strains, improvement through mutagenesis with respect to constitutive N2 fixation and resistance to the noncongenial agronomic factors has been achieved. By preliminary meristem mutagenesis inAzolla, reduced phosphate dependence was achieved, as were temperature tolerance and significant sporulation/spore germination under controlled conditions. Mass-production biofertilizer technology of free-living and symbiotic (Azolla-Anabaena) cyanobacteria was studied, as were the interacting and agronomic effects of both kinds of cyanobacterial biofertilizer with rice, improving the economics of rice cultivation with the cyanobacterial biofertilizers. Recent results indicate a strong potential for cyanobacterial biofertilizer technology in rice-growing countries, which opens up a vast area of more concerted basic, applied, and extension work in the future to make these self-renewable natural nitrogen resources even more promising at the field level in order to help reduce the requirement for inorganic N to the bare minimum, if not to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Aboul-Fadi, M., E. M. Taha, M. R. Hamissa, A. S. El-Nawawy &A. Shoukri. 1967. The effect of the nigrogen-fixing blue-green algaTolypothrix tenuis on the yield of paddy. J. Microbiol. UAR 2: 241–249.

    Google Scholar 

  • Adams, D. G. &P. S. Duggan. 1999. Heterocyst and akinete differentiation in cyanobacteria. New Phytol. 144: 3–33.

    Article  Google Scholar 

  • Adhikary, B. H., S. Vangnai, T. Attanandana, P. Swatdee &P. Sripichitt. 1997. Growth and nitrogen production rates ofAzolla (A. microphylla) as affected by cultivation methods: An economic perspective on rice cultivation in Thailand. Kasetsart J. Nat. Sci. 31: 134–140.

    Google Scholar 

  • Agafodorova, M. N., O. A. Gorelova, O. I. Baulina, L. R. Semionova, T. G. Korzhenevskaya, R. G. Butenko &M. V. Gusev. 1982. The study of the initial stages of the cyanobacterial cells and spheroplasts’ penetration into the isolated protoplasts of tobacco, induced by polyethylene glycol. Izv. Akad. Nauk USSR, Ser. Biol. 4: 510–518.

    Google Scholar 

  • Agarkar, D. S. 1967. Myxophyceae of Gwalior, Madhya Pradesh. Phykos 6: 1–6.

    Google Scholar 

  • Ahmed, S. I. &Ahmedunnisa. 1984. Utilization of blue-green algae as biofertilizer for paddy cultivation. Pakistan J. Agric. Sci. 57: 355–358.

    Google Scholar 

  • Aiyer, R. S. 1965. Comparative algological studies in rice fields in Kerala State. Agric. Res. J. Kerala 3: 100–104.

    Google Scholar 

  • —,S. Salahudean &G. S. Venkataraman. 1972. Long term algalization field trial with high yielding rice varieties. Indian J. Agric. Sci. 42: 380–383.

    Google Scholar 

  • Alexander, V. 1975. Nitrogen fixation by blue-green algae in polar and sub-polar regions. Pp. 175–188in W. D. P. Stewart (ed.), Nitrogen fixation by free-living micro-organisms. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Ali, S. &I. Watanabe. 1986. Responseof Azolla to P, K, Zn in different wetland rice soils in relation to chemistry of flood water. Soil Sci. Pl. Nutr. 32: 239–254.

    CAS  Google Scholar 

  • Al-Kaisi, K. A. 1976. Contributions to the algal flora of the rice fields of Southeastern Iraq. Nova Hedwigia 17: 813–827.

    Google Scholar 

  • Almon, H. &P. Böger. 1988. Nitrogen and hydrogen metabolism: Induction and measurement. Methods in Enzymol. 167: 459–467.

    Article  CAS  Google Scholar 

  • — &H. Böhme. 1997. Methodologies used in the study of nitrogen metabolism. Pp. 223–248in A. K. Rai (ed.), Cyanobacterial nitrogen metabolism and environmental biotechnology. Springer-Verlag, New York; Narosa, New Delhi.

    Google Scholar 

  • Amma, P. A., R. S. Aiyer &N. Subramoney. 1966. Occurrence of blue-green algae in acid soils of Kerala. Agric. Res. J. Kerala 4: 141–142.

    Google Scholar 

  • Anand, N. 1989. Handbook of blue-green algae (of rice fields of South India). Bishen Singh Mahendra Pal Singh, Dehra Dun, India.

    Google Scholar 

  • —. 1992. Physiological responses on nitrogen-fixing blue-green algae (Cyanobacteria) to commercial biofertilizers. Pp. 83–91in B. D. Kaushik (ed.), Proc. Nat. Symp. Nitrogen Fixation. Indian Agric. Res. Inst., New Delhi.

    Google Scholar 

  • —. 1998a. Nitrogen fixation by non-heterocystous cyanobacteria (blue-green algae). Pp. 9–18in B. N. Verma, A. N. Kargupta & S. K. Goyal (eds.), Advances in phycology: An appraisal. APC Publs., New Delhi.

    Google Scholar 

  • —. 1998b. Blue-green algae (cyanobacteria) as biofertilizers: Retrospects and prospects. Pp. 65–71in A. Varma (ed.), Microbes: For health, wealth & sustainable environment. Malhotra, New Delhi.

    Google Scholar 

  • — &R. S. S. Hopper. 1987. Blue-green algae from rice-fields in Kerala State, India. Hydrobiologia 144: 223–232.

    Article  Google Scholar 

  • — &A. Karuppuswamy. 1987. Response of nitrogen-fixing and non-nitrogen fixing blue-green algae (cyanobacteria) in the presence of certain common fertilizers. Phykos 26: 22–26.

    Google Scholar 

  • — &V. S. R. Murugesa. 1996. Nitrogen fixation at night in nature. Curr. Sci. 20: 119–120.

    Google Scholar 

  • — &P. Parmeswaran. 1992. Growth and nitrogen fixation by six cultures of blue-green algae in the presence of NPK fertilizers. Pp. 107–122in Proc. 31st Meeting of the Assoc. of Microbiologists of India on Biological Nitrogen Fixation and Biogas Technology, Tamil Nadu Agric. Univ., Coimbatore, India.

    Google Scholar 

  • — &G. Revathi. 1992. Physiological response of a heterocystous filamentous blue-green alga,Nostoc calcicola Breb. ex. Born et Flah to varying pH. Pp. 151–161in B. D. Kaushik (ed.), Proc. Nat. Symp. Nitrogen Fixation. Indian Agric. Res. Inst, New Delhi.

    Google Scholar 

  • —,L. Radah, Shanthakumar, R. S. Hopper, G. Revathi &T. D. Subrahmanian. 1990. Bluegreen algae as biofertilizers: Certain view points on the choice of the isolates. Pp. 117–135in V. N. Raja Rao (ed.), Perspectives in phycology. Today & Tomorrow’s Printers & Publishers, New Delhi.

    Google Scholar 

  • Anderson, D. C. &S. R. Rushforth. 1976. The cryptogam flora of desert soil crust in southern Utah, U.S.A. Nova Hedwigia 17: 691–714.

    Google Scholar 

  • Antarikanonda, P. 1982a. Effect of salinity on growth, nitrogen fixation and sodium uptake of rapidly growing N2-fixing blue-green algaAnabaena sp. TA1. Microbios 34: 177–184.

    CAS  Google Scholar 

  • —. 1982b. Influence of pretreating the seeds with extract ofAnabaena siamensis on germination and growth of some rice varieties from Thailand. FAO International Commission 31: 37–39.

    Google Scholar 

  • —. 1984. Production of extracellular free amino acids by cyanobacteriumAnabaena siamensis. Curr. Microbiol. 11: 191–196.

    Article  CAS  Google Scholar 

  • Ashley, J., S. R. Rushforth &S. R. Johansen. 1985. Soil algae of cryptogamic crusts from the Utah Basin, Utah, U.S.A. Great Basin Naturalist 45: 432–441.

    Google Scholar 

  • Ashton, P. J. 1974. The effect of some environmental factors on the growth ofA. filiculoides. Pp. 123–138in E. M. van Zinderen Bakker (ed.), The Orange River progress report. Bloemfontein, South Africa.

    Google Scholar 

  • — &R. D. Walmsley. 1976. The aquatic fernAzolla and itsAnabaena symbiont. Endeavour 35: 39–43.

    Article  CAS  Google Scholar 

  • Astier, C., C. Vernotte, M. DerVartenium &F. Joset-Espardellier. 1980. Isolation and characterization of two DCMU-resistant mutants of the blue-green algaAphanocapsa 6714. P1. Cell Physiol. 20: 1501–1510.

    Google Scholar 

  • Badger, M. R. &G. D. Price. 1992. The CO2 concentration mechanism in cyanobacteria and microalgae. Physiol.Pl. 84:606–615.

    Article  CAS  Google Scholar 

  • Bailey, D., A. P. Mazurak &J. R. Rosowski. 1973. Aggregation of soil particles by algae. J. Phycol. 9: 99–101.

    Google Scholar 

  • Banerjee, K. K. 1994. Induction for sporulation and spore germination inAzolla-Anabaena symbiotic nitrogen-fixing complex. M.Sc. thesis, Banaras Hindu University.

  • Banerji, J. C. 1939. On algae found in soil samples from an alluvial paddy field of Faridpur, Bengal. Sci. & Cult. 1:298–299.

    Google Scholar 

  • Bangale, U. D. &S. G. Bharti. 1980. On the algal flora of cultivated soils of Karnataka state of India. Phykos 19: 95–113.

    Google Scholar 

  • Barone-Lumago, M. R., P. Caputo &G. S. Gigliano. 1988. Annual growth cycle ofAzolla filiculoides Lam. at Naples, Italy and its implications for application. Delpinoa 27: 3–16.

    Google Scholar 

  • Barthakur, H. B. &H. Talukdar. 1983. Use ofAzolla and commercial nitrogen fertilizer in Jorhat, India. Int. Rice Res. Newslett. 8: 20–21.

    Google Scholar 

  • Becking, J. H. 1979. Environmental requirements ofAzolla for use in tropical rice production. Pp. 245–274in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Belnap, J. &K. T. Harper. 1995. Influence of cryptobiotic soil crusts on element content of two desert seed plants. Arid Soil Res. & Rehabilitation 9: 197–115.

    Google Scholar 

  • Bendre, A. M. &S. Kumar. 1975. Cyanophyceae of Meerut. Phykos 14: 11–27.

    Google Scholar 

  • Bergman, B. 1999. Distribution of nitrogenase in the marine non-heterocystous cyanobacteriumTrichodesmium: A review. Pp. 223–227in L. Charpy & A. W. D. Larkum (eds.), Marine cyanobacteria. Bull. de l’Inst. Océanographique, 19. Musée Océanographique, Monaco.

    Google Scholar 

  • Berliner, M. D. &R. W. Fisher. 1987. Surface lectine binding toAnabaena variabilis and to cultured and freshly isolatedAnabaena azollae. Curr. Microbiol. 16: 150–152.

    Article  Google Scholar 

  • Bhan, U. 2000. Biofertilization of two rice genotypes with N2-fixingAzolla-Anabaena symbiotic complex and its thermo-tolerant mutant strain. M.Sc. thesis, Banaras Hindu University.

  • Bisoyi, R. N. 1982. Multiplication and utilization of blue-green algae in rice field. Ph.D. diss., Berhampur University.

  • — &P. K. Singh. 1988a. Effect of phosphorus fertilization in blue-green algae inoculum production and nitrogen yield under field conditions. Biol. Fertility Soils 5: 338–343.

    Article  CAS  Google Scholar 

  • ——. 1988b. Effect of seasonal changes on cyanobacterial production and nitrogen yield. Microbial Ecol. 16: 149–154.

    Article  Google Scholar 

  • Böhme, H. &R. Haselkorn. 1988. Molecular cloning and nucleotide sequence analysis of the gene coding for heterocyst ferredoxin from the cyanobacteriumAnabaena sp. strain PCC 7120. Molec. Gen. Genet. 214: 278–285.

    Article  PubMed  Google Scholar 

  • — &B. Schrautemeier. 1987. Electron donation to nitrogenase in a cell-free system from heterocysts ofAnabaena variabilis. Biochim. Biophys. Acta 891: 115–120.

    Article  Google Scholar 

  • Borowitzka, M. A. 1996. Closed algal photobioreactors: Design considerations for large-scale systems. J. Mar. Biotechnol. 4:185–191.

    CAS  Google Scholar 

  • —. 1999. Commercial-scale culture of cyanobacteria. Pp. 507–515in L. Charpy & A. W. D. Larkum (eds.), Marine cyanobacteria. Bull. de l’Inst. Océanographique, 19. Musée Océanographique, Monaco.

    Google Scholar 

  • Bose, P., U. S. Nagpal, G. S. Venkataraman &S. K. Goyal. 1971. Solubilization of tricalcium phosphate by blue-green algae. Curr. Sci. 7: 165–166.

    Google Scholar 

  • Böthe, H., O. Schmitz, G. Boison, B. Hundeshagen &W. Zimmer. 1995. Nitrogenases and hydrogenases in cyanobacteria. Pp. 207–212in I. A. Tikhonovich, N. A. Provorov, V. I. Romanov & W. E. Newton (eds.), Nitrogen fixation: Fundamentals and applications. Kluwer Academic, Dordrecht, Netherlands.

    Google Scholar 

  • Bottomley, P. J., J. F. Grillo, C. van Baalen &F. R. Tabita. 1979. Synthesis of nitrogenase and heterocysts byAnabaena sp. CA in the presence of high levels of ammonia. J. Bacteriol. 140: 938–943.

    PubMed  CAS  Google Scholar 

  • Boussiba, S. 1988. N2-fixing cyanobacteria as nitrogen biofertilizer: A study with the isolateAnabaena azollae. Symbiosis 6: 129–138.

    Google Scholar 

  • —. 1989. Ammonium uptake in the alkalophilic cyanobacteriumSpirulina platensis. PI. Cell Physiol. 32: 303–314.

    Google Scholar 

  • —. 1991. Nitrogen-fixing cyanobacteria: Potential uses. Pl. & Soil 137: 177–180.

    Article  Google Scholar 

  • —. 1993. Production of the nitrogen-fixing cyanobacteriumAnabaena siamensis in a closed tubular reactor for rice farming. Microbial Releases 2: 35–39.

    Google Scholar 

  • —. 1997. Ammonia assimilation and its biotechnological aspects in cyanobacteria. Pp. 35–72in A. K. Rai (ed.), Cyanobacterial nitrogen metabolism and environmental biotechnology. SpringerVerlag, New York; Narosa, New Delhi.

    Google Scholar 

  • —,W. Dilling &J. Gibson. 1984. Methylammonium transport inAnacystis nidulans R-2. J. Bacteriol. 160:204–210.

    PubMed  CAS  Google Scholar 

  • —,E. Sandbank, G. Shelef, Z. Cohen, A. Vonshak, A. Ben-Amotz, S. Arad &A. Richmond. 1988. Outdoor cultivation of the marine microalgaIsochrysis galbana in open reactors. Aquaculture 72: 247–253.

    Article  Google Scholar 

  • Bozzini, S., P. De Luca, A. Moreotti, S. Saboto &D. Siniscalogiglion. 1984. Comparative study of six species ofAzolla in relation to their utilization on green manure for rice. Pp. 125–131in W. S. Sil-ver & E. C. Schroder (eds.), Practical application ofAzolla for rice production. Martinus Nijhoff / Dr. W. Junk, Dordrecht, Netherlands.

    Google Scholar 

  • Brady, N. C. 1979. Opening address. Pp. 1–2in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Braun-Howland, E. B. &S. A. Nierzwicki-Bauer. 1990.Azolla-Anabaena symbiosis: Biochemistry, physiology, ultrastructure and molecular biology. Pp. 119–136in A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bristol, B. M. 1920. On the algal flora of some desiccated English soils: An important factor in soil biology. Ann. Bot. 34: 35–81.

    Google Scholar 

  • Brotonogero, S., M. Sudjadi, S. Partharjono, H. Sukiman, T. Prihatini &V. Hendrik. 1982. Some experiments on the use ofAzolla for rice production in Indonesia. Pp. 567–573in P. H. Graham & S. C. Harris (eds.), Biological nitrogen fixation technology for tropical agriculture. Centra Int. de Agric. Trop., Cali, Colombia.

    Google Scholar 

  • Brouers, M. 1986. Hydrogen production by immobilizedScenedesmus cells and ammonia production by immobilizedAnabaena filaments. Pp. 54–63in C. Webb, G. M. Black & B. Atkinson (eds.), Process engineering aspects of immobilised cell systems. Inst. of Chem. Engineers, Rugby, England.

    Google Scholar 

  • —,H. de Jong, D.-J. Shi, K. K. Rao &D. O. Hall. 1987. Sustained ammonia production by immobilized cyanobacteria. Progr. Photosynth. Res. 2: 645–647.

    CAS  Google Scholar 

  • Bunt, J. S. 1961. Nitrogen-fixing blue-green algae in Australian rice soil. Nature 192: 479–480.

    Article  Google Scholar 

  • Burgoon, A. C. &P. J. Bottino. 1976. Uptake of nitrogen-fixing blue-green algaGloeocapsa into protoplasts of tobacco and maize. J. Heredity 67: 223–247.

    Google Scholar 

  • ——. 1977. Uptake of nitrogen-fixing blue-green algaGloeocapsa by plant protoplasts. Pp. 213–238in A. Hollaender, R. H. Burns, P. R. Day, R. W. F. Hardy, D. R. Helinsky, M. R. Lom-borg, L. Owens & R. C. Valentine (eds.), Genetic engineering for nitrogen fixation. Basic Life Sciences. Plenum Press, New York.

    Google Scholar 

  • Cameron, H. J. &G. R. Julian. 1988. Utilization of hydroxyapatite by cyanobacteria as their sole source of phosphate and calcium. Pl. & Soil 109:123–124.

    Article  CAS  Google Scholar 

  • Carpenter, E. J. &C. C. Price. 1976. MarineOscillatoria (Trichodesmium): Explanation for aerobic nitrogen fixation without heterocysts. Science 191:1278–1280.

    Article  PubMed  CAS  Google Scholar 

  • Castenholz, R. W. &J. W. Waterbury. 1989. Cyanobacteria. Pp. 1710–1727in J. G. Holt (ed.), Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Castorph, H. &D. Kleiner. 1984. Some properties of aKlebsiella pneummoniae ammonium transport negative mutant. Arch. Microbiol. 139: 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Chacko, P. I. 1972. Blue-green algae in fish ponds in Tamil Nadu, India. Pp. 448–454in T. V. Desikach-ary (ed.), Taxonomy and biology of blue-green algae. Madras Univ., Centre for Advanced Study in Botany, Madras, India.

    Google Scholar 

  • Chauhan, K. L. &A. B. Gupta. 1984. Cytokinin like substance in blue-green algae. Curr. Sci. 53: 324–325.

    CAS  Google Scholar 

  • Chopra, T. S. &J. N. Dube. 1971. Changes of N content of a rice soil inoculated withTolypothrix tenuis. Pl. & Soil 35: 453–462.

    Article  Google Scholar 

  • Da Silva, E. J., L. E. Henrickson &E. Haselkorn. 1975. Effect of pesticides on blue-green algae and nitrogen fixation. Arch. Environ. Contamin. Toxicol. 3: 193–204.

    Article  Google Scholar 

  • Das, B. 1977. Effect of herbicides and pesticides on the fresh water blue-green algae. Ph.D. diss., Utkal University.

  • Das, S. C., M. Mandai &L. N. Mandai. 1991. Effect of growth and subsequent decomposition of bluegreen algae on the transformation of iron and manganese in submerged soils. Pl. & Soil 138:75–84.

    Article  CAS  Google Scholar 

  • Davey, M. R. &J. B. Power. 1975. Polyethylene glycol-induced uptake of microorganisms into a higher plant’s protoplasts: An ultrastructural study. Pl. Sci. Lett. 5: 269–288.

    Article  Google Scholar 

  • De, P. K. 1939. The role of blue-green algae in nitrogen fixation in rice fields. Proc. Roy. Soc. London, B, 127: 121–139.

    CAS  Google Scholar 

  • — &L. N. Mandai. 1956. Fixation of nitrogen by algae in rice fields. Soil Sci. 81: 453.

    Article  CAS  Google Scholar 

  • De Caire, G. Z., M. S. de Cano, M. C. Z. de Mule, R. M. Palma &K. Colombo. 1997. Exopolysaccharide ofNostoc muscorum (cyanobacteria) in the aggregation of soil particles. J. Appl. Phycol. 9: 249–253.

    Article  Google Scholar 

  • De Halperin, D. R., M. S. de Cano, M. C. Z. de Mule &G. Z. de Caire. 1992. Diazotrophic cyanobacteria from Argentine paddy fields. Phyton (Buenos Aires) 53: 135–142.

    Google Scholar 

  • De Winder, B., J. Pluis, L. de Reus &L. R. Mur. 1989. Characterization of a cyanobactenal algal dune crust in the coastal dunes in the Netherlands. Pp. 77–83in Y. Cohen & E. Rosenberg (eds.), Microbial mats: Physiological ecology of benthic microbial communities. Amer. Soc. Microbiol., Washington, DC.

    Google Scholar 

  • Desertova, B. 1974. Some interesting algae for soil. Arch. Hydrobiol. 46: 105–119.

    Google Scholar 

  • Desikachary, T. V. 1959. Cyanophyta. Indian Council of Agric. Res., New Delhi.

    Google Scholar 

  • Dey, T. 1999. Induction and characterization ofAzolla-Anabaena symbiotic N2-fixing complex and their assessment in rice (Oryza sativa L.). Ph.D. diss., Banaras Hindu University.

  • Diara, H. D., H. Van Brandt, A. M. Diop &C. Van Hove. 1987.Azolla and its use in rice culture in West Africa. Pp. 147–152in Azolla utilization. Int. Rice Res. Inst., Manila.

    Google Scholar 

  • Dodds, W. K., D. A. Gudder &D. Mollenhauer. 1995. The ecology ofNostoc. J. Phycol. 31:2–18.

    Article  CAS  Google Scholar 

  • Dovan, C. 1985. Studies on sexual reproduction and ability to hybridize between speciesof Azolla. Int. Rice Res. Inst., Manila.

    Google Scholar 

  • Dubey, A. K. &A. K. Rai. 1995. Application of algal biofertilizers (Aulosira fertilissima Tenuis andAnabaena doliolum Bharadwaja) for sustained paddy cultivation in northern India. Israel J. Pl. Sci. 43:41–51.

    Google Scholar 

  • Durrell, L. W. 1964. Algae in tropical soils. Trans. Amer. Microbiol. Soc. 83: 79–85.

    Article  Google Scholar 

  • Dutta, N. &G. S. Venkataraman. 1968. An exploration study of the algae of some cultivated and uncultivated soils. Indian J. Agron. 3: 109–110.

    Google Scholar 

  • Economou, A., K. Anagnostidis &M. Roussomoustakaki. 1984. Structural aspects of the adaptation of some blue-green algae and diatoms to desiccation. Pp. 103–114in N. S. Margaris, M. Aria-noustou-Faraggitaki & W. C. Oechel (eds.), Being alive on land: Proceedings of the International Symposium on Adaptations to the Terrestrial Environment, held in Halkidiki, Greece, 1982. W. Junk, The Hague.

    Google Scholar 

  • Eldridge, D. L. &R. S. N. B. Greene. 1994. Microbiotic soil crusts: A review of their roles in soil and ecological processes in the rangelands of Australia. Austral. J. Soil Res. 32: 389–415.

    Article  Google Scholar 

  • El-Nawawy, A. S. &Y. A. Hamdi. 1975. Research on blue-green algae in Egypt, 1958–1972. Pp. 219–228in W. D. P. Stewart (ed.), Nitrogen fixation by free-living micro-organisms. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Espinosa-Abarca, S. A., S. P. Myozga &M. M. Ortego. 1985. A study on the growth ofAzollaflliculoides in culture media and in rice field soil of Morelos State of Mexico. Rev. Latino-amer. Microbiol. 27: 61–67.

    Google Scholar 

  • Falchini, L., E. Sparvoli &L. Tomaselli. 1996. Effect ofNostoc (cyanobacteria) inoculation on the structure and stability of clay soils. Biol. Fertility Soils 23: 246–252.

    Article  Google Scholar 

  • FAO. 1977. China: Recycling of organic wastes in agriculture. FAO Soils Bull., 40. Food and Agric. Org., Rome.

    Google Scholar 

  • Fay, P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. FEMS Microbiol. Rev. 56: 340–373.

    CAS  Google Scholar 

  • Fernandez-Valentine, E., A. Quesada, C. Prosperi, M. Nieva, F. Leganes &A. Ucha. 1997. Shortand long-term effects of ammonium on photodependent nitrogen fixation in wetland rice fields of Spain. Biol. Fertility Soils 24: 353–357.

    Article  Google Scholar 

  • Ferrera-Cerrato, R. &A. M. Romero. 1982. Propagation of anAzolla sp. and its application as green manure for corn in Mexico. Pp. 561–564in P. H. Graham & S. C. Harris (eds.), Biological nitrogen fixation technology for tropical agriculture. Centra Int. de Agric. Trop., Cali, Colombia.

    Google Scholar 

  • Flore, M. D. F. &A. P. Ruschel. 1982. TheAzolla-Anabaena azollae association, I: Biology and significance in agriculture. Cientia Cult. 34: 792–811.

    Google Scholar 

  • Flemming, H. &R. Haselkorn. 1973. Differentiation inNostoc muscorum: Nitrogenase is synthesized in heterocysts. Proc. Nat. Acad. Sci. U.S.A. 70: 2727–2731.

    Article  Google Scholar 

  • Fogg, G. E. 1949. Growth and heterocyst production inAnabaena cylindrica Lemm. II. in relation to carbon and nitrogen metabolism. Ann. Bot. 13: 241–259.

    CAS  Google Scholar 

  • —&W. D. P. Stewart. 1968.In situ determination of biological nitrogen fixation in Antarctica. Antarctica Surv. Bull. 15: 39–46.

    Google Scholar 

  • ——P. Fay &A. E. Walsby. 1973. The blue-green algae. Academic Press, London.

    Google Scholar 

  • Fontana, A. 1984. Thermophilic enzymes and their potential use in biotechnology. Pp. 1: 221–232in Third European Congress on Biotechnology, München, Federal Republic of Germany, 10–14 September 1984. Weinheim, Deerfield Beach, FL.

    Google Scholar 

  • Fontes, A. G., M. A. Vargas, J. Moreno, M. G. Guerrero &M. Losada. 1987. Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture. Biomass 13:33–43.

    Article  CAS  Google Scholar 

  • Fork, D. C. &N. Murata. 1977. Studies on the effect of transition of the physical phase of membrane lipids on electron transport in the extreme thermophileSynechococcus lividus. Carnegie Institute Year Book 76: 222–226.

    Google Scholar 

  • Franche, C. &G. Cohen-Bazire. 1985. The structuralnif genes of four symbioticAnabaena azollae show a highly conserved physical arrangement. Pl. Sci. (Elsevier) 39: 125–131.

    Article  CAS  Google Scholar 

  • ——. 1987. Evolutionary divergence in thenif HDK gene region among nine symbioticAnabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 3: 159–178.

    Google Scholar 

  • Fritsch, F. E. 1907. The subaerial and freshwater algal flora of the tropics. Ann. Bot. 30: 235–275.

    Google Scholar 

  • Gallon, J. R. 1992. Reconciling the incompatible: N2 fixation and O2. New Phytol. 122: 571–609.

    CAS  Google Scholar 

  • — &A. E. Chaplin. 1982. Nitrogen fixation by cyanobacteria. Academic Press, London.

    Google Scholar 

  • —,M. A. Hashem &A. E. Chaplin. 1991. Nitrogen fixation byOscillatoria spp. under autotrophic and photoheterotrophic conditions. J. Gen. Microbiol. 137: 31–39.

    CAS  Google Scholar 

  • Gantar, M. 1993. Colonization of wheat (Triticum vulgäre L.) by nitrogen-fixing cyanobacteria, III: The role of a hormogonia producing factor. New Phytol. 124: 505–513.

    Article  CAS  Google Scholar 

  • —,N. W. Kerby, P. Rowell &Z. Obreht. 1991a. Colonization of wheat (Triticum vulgäre L.) by N2-fixing cyanobacteria, I: A survey of soil cyanobacterial isolates forming associations with roots. New Phytol. 118: 477–483.

    Article  Google Scholar 

  • ———. 1991b. Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria, II: An ultrastructural study. New Phytol. 118: 485–492.

    Article  Google Scholar 

  • Gaur, A. C. &R. Singh. 1982. Integrated nutrient supply system. Fertilizer News 27: 87–97.

    Google Scholar 

  • Ghosh, T. K. &K. C. Sana. 1997. Effects of inoculation of cyanobacteria on nitrogen status and nutrition of rice (Oryza sativa L.) in an Entisol amended with chemical and organic sources of nitrogen. Biol. Fertility Soils 24: 123–128.

    Article  CAS  Google Scholar 

  • Gibson, C. E. &R. V. Smith. 1982. Freshwater plankton. Pp. 464–487in N. G. Carr & B. A. Whitton (eds.), The biology of cyanobacteria. Botanical Monographs, 19. Blackwell Scientific, Oxford.

    Google Scholar 

  • Glibert, P. M. &D. A. Bronk. 1994. Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria,Trichodesmium sp. Appl. & Environ. Microbiol. 60: 3996–4000.

    CAS  Google Scholar 

  • Golden, J. W., S. J. Robinson &R. Haselkorn. 1985. Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacteriumAnabaena. Nature 314: 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Gopal, B. 1967. Contribution ofAzolla pinnata R. Br. to the productivity of temporary ponds at Varanasi. Trop. Ecol. 8: 126–139.

    Google Scholar 

  • Gopalaswamy, G. &S. Kannaiyan. 1998. Biomass production, nitrogen fixation and biochemical characterization ofAzolla hybrids. Indian J. Microbiol. 38: 81–84.

    Google Scholar 

  • Gorelova, O. A., J. Rerabek, T. G. Korzhenevskaya, R. G. Butenko &M. V. Gusev. 1985. Influence of the cyanobacteriumChlorogloeopsis fritschi on growth and biosynthetic activity ofSolanum laciniatum in mixed culture. Fiziol. Rast. (Moscow) 32: 1158–1172.

    CAS  Google Scholar 

  • Goyal, S. K. 1989. Stress compatibility in cyanobacteria. Phykos 28: 267–273.

    Google Scholar 

  • Granhall, U. 1975. Nitrogen fixation by blue-green algae in temperate soils. Pp. 189–198in W. D. P. Stewart (ed.), Nitrogen fixation by free-living micro-organisms. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • — &E. Henriksson. 1969. Nitrogen-fixing blue-green algae in Swedish soils. Oikos 20:175–178.

    Article  Google Scholar 

  • Grant, I. F., P. A. Roger &I. Watanabe. 1986. Ecosystem manipulation for increasing biological N2 fixation by blue-green algae (cyanobacteria) in lowland rice fields. J. Biol., Agri. Horti. 3: 299–315.

    CAS  Google Scholar 

  • Gupta, A. B. 1966. Algal flora and its importance in the economy of rice fields. Hydrobiologia 28: 213–222.

    Article  Google Scholar 

  • Gusev, M. V. &T. G. Korzhenevskaya. 1990. Artificial associations. Pp. 173–230in A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Häder, D.-P. &R. C. Worrest. 1997. Consequences of the effects of increased solar ultraviolet radiation on aquatic systems. Pp. 11–30in D.-P. Häder (ed.), The effects of ozone depletion on aquatic ecosystems. Academic Press, San Diego, CA; R. G. Landes, Austin.

    Chapter  Google Scholar 

  • ——H. D. Kumar &R. C. Smith. 1995. Effects of increased solar ultraviolet radiation on aquatic ecosystem. Ambio 24: 174–180.

    Google Scholar 

  • Hall, D. O., D. A. Affolter, M. Brouers, D.-J. Shi, L.-W. Yang &K. K. Rao. 1985. Photobiological production of fuels and chemicals by immobilized algae. Pp. 161–185in K. W. Fuller & J. R. Gal-lon (eds.), Plant products and the new technology. Annual Proc. Phytochem. Soc. Europe, 26. Clarendon Press, Oxford; Oxford Univ. Press, New York.

    Google Scholar 

  • Hallenbeck, P. C., P. J. Kostel &J. R. Benemann. 1979. Purification and properties of nitrogenase from the cyanobacterium,Anabaena cylindrical. Eur. J. Biochem. 98: 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Hamdi, Y. A., A. S. El-Nawawy &M. S. Tewfi. 1970. Effect of herbicides on growth and nitrogen fixation of algaTolypothrix tenuis. Acta Microbiol. Polon. 2: 53–56.

    CAS  Google Scholar 

  • —,M. N. Allaa El-Din, S. N. Shalan &M. E. Hassan. 1980. Report on methodology ofAzolla preservation and transport. Ministry of Agric, Giza, Egypt; Food and Agric. Org., Rome.

    Google Scholar 

  • Haselkorn, R. 1978. Heterocysts. Annual Rev. Pl. Physiol. 29: 319–344.

    Article  CAS  Google Scholar 

  • —. 1995. Molecular genetics of nitrogen fixation in photosynthetic prokaryotes. Pp. 29–36in I. A. Tikhonovich, N. A. Provorov, V. I. Romanov & W. E. Newton (eds.), Nitrogen fixation: Fundamentals and applications. Kluwer Academic, Dordrecht, Netherlands.

    Google Scholar 

  • Hechler, W. D. &J. O. Dawson. 1995. Factors affecting nitrogen fixation inAzolla caroliniana. Trans. Illinois State Acad. Sci. 88: 97–107.

    Google Scholar 

  • Hcgde, D. M., B. S. Dwiwedi &S. N. S. Babu. 1999. Biofertilizers for cereal production in India: A review. Indian J. Agric. Sci. 69: 73–83.

    Google Scholar 

  • Henriksson, E. 1971. Algal nitrogen fixation in temperate regions. Pl. & Soil (special volume): 415–419.

  • Henriksson, L. E., P. H. Enckell &E. Henriksson. 1972. Determination of the nitrogen-fixing capacity of algae in soil. Oikos 23: 420–423.

    Article  Google Scholar 

  • Hien, N. T., N. W. Kerby, G. C. Machray, P. Rowell &W. D. P. Stewart. 1988. Expression of glutamine synthetase in mutant strains of the cyanobacteriumAnabaena variabilis which liberate ammonia. FEMS Microbiol. Lett. 56: 337–342.

    Article  CAS  Google Scholar 

  • Holm-Hanson, O.1968. Ecology, physiology and biochemistry of blue-green algae. Annual Rev. Microbiol. 22: 47–70.

    Article  Google Scholar 

  • Hori, K., G. Ishbashi &T. Okita. 1994. Hypocholesterolemic effect of blue-green alga, ishikurage (Nostoc commune) in the rats fed with atherogenic diet. Pl. Foods for Human Nutr. 45: 63–70.

    Article  CAS  Google Scholar 

  • Home, A. J. 1971. The ecology of nitrogen fixation on Signy Island, South Orkney Islands. Brit. Antarctic Surv. Bull. 27: 893–902.

    Google Scholar 

  • Howarth, R. W., R. Marino, J. Lane &J. J. Cole. 1988. Nitrogen fixation in fresh water, estuarine, and marine ecosystems, I: Rates and importance. Limnol. Oceanography 33: 669–687.

    CAS  Google Scholar 

  • Hu, Q., H. Guterman &A. Richmond. 1996. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioengineer. 51: 51–60.

    Article  CAS  Google Scholar 

  • Hughes, B. G., F. G. White, L. P. Vernon &M. A. Smith. 1978. Uptake of cyanelles and blue-green algae into barley and tobacco protoplasts. Pl. Physiol. (Rockville) 61: 54–67.

    Google Scholar 

  • Huneke, A. 1933. Beitrage zur Kenntinis des Symbiose zwischenAzolla andAnabaena. Beitr. Biol. Pflanzen 20: 315–341.

    Google Scholar 

  • Ibrahim, A. N. 1972. Effect of certain herbicides on growth of nitrogen-fixing algae and rice plants. Symbiotic Biol. 11: 445–448.

    CAS  Google Scholar 

  • IRRI. 1987. Yearly progress inAzolla-rice research. Pp. 296–299in Azolla utilization. Int. Rice Res. Inst., Manila.

    Google Scholar 

  • Ito, O. &I. Watanabe. 1983. Availability to rice plants of nitrogen fixed byAzolla. Soil Sci. Pl. Nutr. 29: 91–104.

    Google Scholar 

  • Jacobson, B. L., Y. K. Chae, H. Böhme, J. L. Markley &H. M. Holden. 1992. Crystallization and preliminary analysis of oxidized, recombinant, heterocyst (2Fe-2S) ferredoxin fromAnabaena 7120. Arch. Biochem. Biophys. 294: 279–281.

    Article  PubMed  CAS  Google Scholar 

  • Jacq, A. &P. A. Roger. 1977. Decrease of losses due to sulphate reducing processes in the super atmosphere of rice by pre-soaking seeds in a culture of blue-green algae. Cah. O.R.S.T.O.M., Ser. Biol. 12: 101–108 (in French, with an English summary).

    Google Scholar 

  • Jayakumar, A., S. J. Hwang, J. M. Fabiny, A. C. Chinault &E. M. Barnes. 1989. Isolation of an ammonium or methylammonium ion transport mutant ofEscherichi coli and complementation of the cloned gene. J. Bacteriol. 171: 996–1001.

    PubMed  CAS  Google Scholar 

  • Jha, M. N., U. N. Jha, N. Ahmad &M. K. Malik. 1986. Cyanobacterial flora of rice field soils of Pusa and its adjoining areas. Phykos 25: 97–101.

    Google Scholar 

  • Johansen, J. R. 1993. Cryptogamic crusts of semiarid and arid lands of North America. J. Phycol. 29: 140–147.

    Article  Google Scholar 

  • Jurgensen, M. S. &C. B. Davey. 1968. Nitrogen-fixing blue-green algae in acid forest and nursery soils. Canad. J. Microbiol. 14: 1179–1183.

    CAS  Google Scholar 

  • Kabli, S. A., S. M. Al Garni &F. A. Al Fassi. 1997. Efficiency of cyanobacteria from soil of western region in the kingdom of Saudi Arabia as biofertilizer of wheat. Arab Gulf J. Sci. Res. 15:481–503.

    Google Scholar 

  • Kalita, M. C. &C. M. Sarma. 1994. Response of rice variety Mahsuri to green biofertilizerAzollapinnata. J. Assam Sci. Soc. 36: 260–265.

    Google Scholar 

  • Kamat, M. D. &M. Z. Patel. 1973. Soil algae of arice field at a different depth. Botanique 4:101–106.

    Google Scholar 

  • Kamuru, F., S. L. Albrecht, L. H. Allen &K. T. Shanmugam. 1998. Growth and accumulation of15N in rice inoculated with the parent and a nitrogenase-derepressed mutant strain ofAnabaena variabilis. Appl. Soil Ecol. 5: 189–195.

    Article  Google Scholar 

  • Kannaiyan, S. 1978. Nitrogen fixation byAzolla: A brief review. Farm Sci. 5: 19–26.

    Google Scholar 

  • —. 1982.Azolla and rice. Pp. 1–56in Multiplication and use ofAzolla biofertilizer for rice production training. Tamil Nadu Agric. Univ., Coimbatore, India.

    Google Scholar 

  • —. 1984. Studies onAzolla biofertilizer for rice production in Tamil Nadu. Pp. 1–222in Proc. Int. Workshop to Assess the Potential ofAzolla Use in Trop. Asia. NIFTAL Project, Thailand.

    Google Scholar 

  • —. 1985. Algal bio-fertilizers for lowland rice. Tamil Nadu Agric. Univ., Coimbatore, India, pp. 12–24.

    Google Scholar 

  • -. 1992.Azolla biofertilizer technology for rice. Tamil Nadu Agric. Univ. Mag., 1–56.

  • —. 1993. Nitrogen fixation byAzolla and its contribution of nitrogen to the rice crop. Pp. 77–111in S. N. Tata, A. M. Wadhwani & M. S. Mehdi (eds.), Biological nitrogen fixation. Indian Council of Agric. Res., New Delhi.

    Google Scholar 

  • —. 1994. Sporulation and spore germination in symbiotic nitrogen-fixing water fernAzolla. Pp. 71–94in A. B. Prasad & A. Vaishampayan (eds.), Biology and application of nitrogen-fixing organisms: Problems and prospects. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • — &C. Somporn. 1989. Effect of high temperature on growth, N2 fixation and chlorophyll content of five species ofAzolla-Anabaena symbiosis. Biol. Fertility Soils 7: 168–172.

    Article  CAS  Google Scholar 

  • —,S. K. Goyal, S. S. Goyal &D. W. Rains. 1988. Some factors influencing the growth and sporulation inAzolla. Phykos 27: 197–205.

    Google Scholar 

  • —,S. J. Aruna, M. P. Kumari &D. O. Hall. 1997. Immobilized cyanobacteria as a biofertilizer for rice crops. J. Appl. Phycol. 9: 167–174.

    Article  Google Scholar 

  • Kaplan, D. &G. A. Peters. 1988. TheAzolla-Anabaena relationship, XIV: Chemical composition of the association and soluble carbohydrates of the association, endophyte-freeAzolla, and the freshly isolated endophyte. Symbiosis 24: 35–50.

    Google Scholar 

  • —,H. E. Calvert &G. A. Peters. 1986. Nitrogenase activity and phycobiliproteins of the endophyte as a function of leaf age and cell type. Pl. Physiol. (Rockville) 80: 884–890.

    CAS  Google Scholar 

  • Kaushik, B. D. 1998. Use of cyanobacterial biofertilizers in rice cultivation: A technology improvement. Pp. 211–222in G. Subramanian, B. D. Kaushik & G. S. Venkataraman (eds.), Cyanobacterial biotechnology. Science Publishers, Enfield, NH.

    Google Scholar 

  • — &D. Subhashini. 1985. Amelioration of salt affected soils with blue-green algae, II: Improvement in soil properties. Proc. Indian Natl. Acad. Sci., Part B, Biol. Sci. 51: 386–389.

    Google Scholar 

  • Kerby, N. W., P. Rowell &W. D. P. Stewart. 1985. Ethylenediamine uptake metabolism in the cyanobacteriumAnabaena variabilis. Arch. Microbiol. 141: 244–248.

    Article  CAS  Google Scholar 

  • ———. 1986. The uptake and metabolism of methylamine by N2-fixing cyanobacteria. Arch. Microbiol. 143: 353–358.

    CAS  Google Scholar 

  • ———. 1987. Cyanobacterial ammonium transport, ammonium assimilation and nitrogenase regulation. New Zealand Mar. Freshwater Res. 21: 447–456.

    Article  CAS  Google Scholar 

  • Khan, Z. U. M., Z. N. Tahmida Begum, R. Mandai &M. Z. Hossain. 1994. Cyanobacteria in rice soils. World J. Microbiol. & Biotechnol. 10: 296–298.

    Article  Google Scholar 

  • Kikuchi, M., I. Watanabe &L. D. Haws. 1984. Economic evaluation ofAzolla use in rice production. Pp. 569–591in Organic matter and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Kleiner, K. T. &K. T. Harper. 1977. Soil properties in relation to cryptogamic ground cover in Canyonlands National Park. J. Range Managern. 30: 202–205.

    CAS  Google Scholar 

  • Koike, H. &S. Katoh. 1979. Heat stability of cytochromes and ferredoxin isolated from a thermophilic blue-green alga. Pl. Cell Physiol. 20: 1157–1161.

    CAS  Google Scholar 

  • Kolte, S. A. &S. K. Goyal. 1986. Variability of nitrogen in edaphic strains of blue-green algae from Vidarbha region of Maharashtra. Pp. 78–79in R. Singh, H. S. Nainawatee & S. K. Sawhney (eds.), Current status of biological nitrogen fixation research. Haryana Agric. Univ., Hissar, India.

    Google Scholar 

  • Kozyrovskaya, N. 1990. Note. Cyanonews (Plant Research Laboratory, Michigan State Univ., East Lansing) 6: 3–5.

  • Kulasooriya, S. A. 1998. Cyanobacteria andAzolla as biofertilizer for rice. Pp. 201–209in G. Subrama-nian, B.D. Kaushik & G. S. Venkataraman (eds.), Cyanobacterial biotechnology. Science Publishers, Enfield, NH.

    Google Scholar 

  • —,P. A. Roger, W. L. Barraquio &I. Watanabe. 1980. Biological nitrogen fixation by epiphytic microorganisms in rice fields. IRRI Research Paper Series, 47: 1–10.

    Google Scholar 

  • Kumarsinghe, K. S., F. Zapata, G. Kovacs, D. L. Eskew &S. K. A. Danso. 1986. Evaluation of the availability ofAzolla N and Urea-N using15N. Pl. & Soil 90: 293–299.

    Google Scholar 

  • Kundu, D. K. &J. K. Ladha. 1995. Enhancing soil nitrogen use and biological nitrogen fixation in wetland rice. Exp. Agric. 31: 261–277.

    CAS  Google Scholar 

  • Kushari, D. P. &I. Watanabe. 1991. Differential response ofAzolla to phosphorus deficiency, I: Scanning methods in quantity controlled condition. Soil Sci. Pl. Nutr. 37: 271–282.

    Google Scholar 

  • Ladha, J. K. &H. D. Kumar. 1978. Genetics of blue-green algae. Biol. Rev. (London) 53: 355–386.

    Google Scholar 

  • — &R. P. Pareek. 2000. Monitoring nitrogen equilibrium for sustainable crop production in ricebased cropping systems. Pp. 1: 71–72in G. B. Singh (ed.), Proc. Int. Conf. on Managing Natural Resources. Indian Agric. Res. Inst., Indian Council of Agric. Res., New Delhi.

    Google Scholar 

  • — &P. M. Reddy 1995. Extension of nitrogen fixation to rice: Necessity and possibilities. Geog. J. 35: 363–372.

    Google Scholar 

  • —,A. T. Padre, G. C. Punzalan &I. Watanabe. 1987. Nitrogen-fixing (C2H2-reducing) activity and plant growth characters of 16 wetland rice varieties. Soil Sci. Pl. Nutr. 33: 187–200.

    Google Scholar 

  • Lai, Y. K., C. W. Li, C. H. Hu &M. L. Lee. 1988. Quantitative and qualitative analysis of protein synthesis during heat shock in marine diatomNitzschia alba (Bacillariophyceae). J. Phycol. 24: 509–514.

    Google Scholar 

  • Lakshmanan, A., S. Anthoniraj &A. Abdulkareem. 1997. Ammonia excretion byAzolla in dual cropping. Madras Agric. J. 84: 554–556.

    Google Scholar 

  • Lal, S. &B. S. Mathur. 1989. Effect of long term fertilization, manuring and liming of an alfisol on maize, wheat and soil properties, II: Soil physical properties. J. Indian Soc. Soil Sci. 37:815–816.

    Google Scholar 

  • Lales, J. S. &R. S. Murte. 1986. Nitrogen accumulation and biomass production ofAzolla microphylla (kaulfuss). Philipp. Agric. 64: 535–542.

    Google Scholar 

  • Lammers, P. &R. Haselkorn. 1983. Sequence of the nifD gene coding for the a-subunit of dinitrogenase from the cyanobacteriumAnabaena. Proc. Natl. Acad. Sci. U.S.A. 80: 4723–4727.

    Article  PubMed  CAS  Google Scholar 

  • Lange, W. 1976. Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Canad. J. Microbiol. 22: 1181–1185.

    CAS  Google Scholar 

  • Lattore, C., J. H. Lee, H. Spiller &K. T. Shanmugam. 1986. Ammonium ion-excreting cyanobacterial mutants as a source of nitrogen for growth of rice: A feasibility study. Biotechnol. Lett. 8: 507–512.

    Article  Google Scholar 

  • Lee, C. C. & C. J. Lin. 1981. The possibility of usingAzolla as a source of nitrogen for rice in Taiwan. Soils and Fertilizers in Taiwan 35–41.

  • Ley, S. N. 1959. The effect of nitrogen-fixing blue-green algae on the yield of rice plants. Acta Hydrobiol. Sin. (Beijing) 4: 440–444.

    Google Scholar 

  • Li, Z. X., S. X. Zu, M. F. Mao &T. Lumpkin. 1982. Study on the utilization of 8Azolla species in agriculture. Zhunggua Nongye Kexue 1: 19–27.

    Google Scholar 

  • Liengen, T. &R. A. Olsen. 1997. Seasonal and site-specific variations in nitrogen fixation in a high arctic area, Ny-Alesund, Spitsbergen. Canad. J. Microbiol. 43: 759–769.

    Article  CAS  Google Scholar 

  • Lin, C. 1992. Effects ofAnabaena azollae on the tolerance ofAzolla to high temperature. J. Fujian Acad. Sci. 7: 30–35.

    Google Scholar 

  • —,I. Watanabe, L. F. Tan &C. C. Liu. 1988. Reestablishment of symbiosis to Anabaena-freeAzolla. Zhunguo Kexue (Sci. Sinica) 30B: 1–5.

    Google Scholar 

  • Liu, C. C. 1979. Use ofAzolla in rice production in China. Pp. 375–394in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • —. 1987. Re-evaluation ofAzolla utilization in agricultural production. Pp. 67–76 inAzolla utilization. Int. Rice Res. Inst., Manila.

    Google Scholar 

  • Lumpkin, T. A. 1982. Chinese technology for the cultivation ofAzolla. Pp. 117–135in P. H. Graham & S. C. Harris (eds.), Biological nitrogen fixation technology for tropical agriculture. Centra Int. de Agric. Trop., Cali, Colombia.

    Google Scholar 

  • —. 1987. Environmental requirements for successfulAzolla growth. Pp. 89–97 inAzolla utilization. Int. Rice Res. Inst., Manila.

    Google Scholar 

  • — &D. L. Plucknett. 1982. Botany and ecology. Pp. 15–38 inAzolla as a green manure: Use and management in crop production. Westview Press, Boulder. CO.

    Google Scholar 

  • Lundkvist, I. 1970. Effect of two herbicides on nitrogen fixation by blue-green algae. Svensk Bot. Tidskr. 64:460–461.

    Google Scholar 

  • Mahapatra, B. S. &G. L. Sharma. 1989. Integrated management ofSesbania, Azolla and urea nitrogen in lowland rice under rice wheat cropping system. J. Agric. Sci. (Cambridge) 113: 203–206.

    Google Scholar 

  • Mandal, B. K. &A. K. Bharti. 1983.Azolla as an organic manure for rice in west Bengal. Indian J. Agric. Sci. 53:472–475.

    Google Scholar 

  • —,N. C. Das, Y. V. Singh &R. K. Ghosh. 1992. Use ofAzolla and other organic materials for rice production. Oryza 30: 54–59.

    Google Scholar 

  • —,Z. N. Tahmida Begum, Z. U. M. Khan &M. Z. Hossain. 1993. N2-fixing blue-green algae in rice fields and their relationship with soil fertility. Bangladesh J. Bot. 22: 73–79.

    Google Scholar 

  • Manna, A. B. &P. K. Singh. 1989. Rice yields as influenced byAzolla N2 fixation and urea-N fertilization. Pl. & Soil 14: 63–68.

    Article  Google Scholar 

  • Margulis, L. 1981. Symbiosis in cell evolution: Life and its environment on the early Earth. W. H. Free-man, San Francisco.

    Google Scholar 

  • Martinez, M. R. 1984. Algae: Biofertilizer for rice. Philippines Council for Agric. Res. and Resource Development (PCARRD) Monitor 12: 9–12.

    Google Scholar 

  • Materasi, R. &W. Balloni. 1965. Some observations on the presence of autotrophic nitrogen-fixing microorganisms in paddy soils. Amm Inst. Pasteur 109:218–223 (in French, with an English summary).

    Google Scholar 

  • Matsuguchi, T. 1979. Factors affecting heterotrophic nitrogen fixation in submerged rice soils. Pp. 207–222in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Mayland, H. F. &T. H. Mclntosh. 1966. Availability of biologically fixed nitrogen-15 to higher plants. Nature 209: 420–421.

    Article  Google Scholar 

  • Mazur, B. J. &C. F. Chui. 1982. Sequence of the gene coding for the a-subunit of dinitrogenase from the blue-green algaAnabaena. Proc. Natl. Acad. Sci. U.S.A. 79: 6782–6786.

    Article  PubMed  CAS  Google Scholar 

  • Meeks, J. C., R. L. Malmberg &C. P. Wolk. 1978. Uptake of auxotrophic cells of a heterocyst-forming cyanobacterium by tobacco protoplasts. Planta 139: 55–63.

    Article  Google Scholar 

  • —,N. A. Steinberg, C. M. Joseph, C. S. Enderlin, P. A. Jorgensen &G. A. Peters. 1985. Assimilation of exogenous and dinitrogen derived13NH +4 byAnabaena azollae separated fromAzolla caroliniana Wild. Arch. Microbiol. 142: 229–233.

    Article  CAS  Google Scholar 

  • ——C. S. Enderlin, C. M. Joseph &G. A. Peters. 1987.Azolla-Anabaena relationship, XIII: Fixation of (13N) dinitrogen. Pl. Physiol. (Rockville) 84: 883–886.

    CAS  Google Scholar 

  • —,C. M. Joseph &R. Haselkorn. 1988. Organization ofnif genes in cyanobacteria in symbiotic association withAzolla andAnthoceros. Arch. Microbiol. 150: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Meeting, B. 1988. Micro-algae in agriculture. Pp. 288–304in M. A. Borowitzka & L. J. Borowitzka (eds.), Micro-algal biotechnology. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Mevarech, M., D. Rice &R. Haselkorn. 1980. Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc. Natl. Acad. Sci. U.S.A. 77: 6476–6480.

    Article  PubMed  CAS  Google Scholar 

  • Mian, M. H. 1985. A15N tracer study of differential nitrogen supply to flooded rice plants byAzolla andAnabaena during their early and later stages of decomposition. Indian J. Agric. Sci. 54: 733–738.

    Google Scholar 

  • — &W. D. P. Stewart. 1984. Studies on the availability of biologically fixed atmospheric dinitrogen by theAzolla-Anabaena complex to flooded rice crops. Pp. 168–175in W. S. Silver & E. C. Schroder (eds.), Practical application ofAzolla for rice production. Martinus Nijhoff / Dr. W. Junk, Dordrecht, Netherlands.

    Google Scholar 

  • ——. 1985. Fate of nitrogen applied asAzolla and blue-green algae (cyanobacteria) in waterlogged rice sols: A15N tracer study. Pl. & Soil 83: 363–370.

    Article  CAS  Google Scholar 

  • Mikheeva, L. E., S. D. Pyramchuk, I. N. Gogotov &S. V. Shestakov. 1990.Anabaena azollae cyanobacterial mutants with derepressed nitrogenase synthesis. Mikrobiologie 59: 35–39.

    CAS  Google Scholar 

  • Mishra, A. K., A. Vaishampayan &V. P. Singh. 1991a. Isolation and physiological characterization of a herbicide-resistant mutant of a nitrogen-fixing cyanobacterium. Pp. 63–68in D. N. Tyagi, B. Bose, A. Hemantaranjan & T. M. Devi (eds.), Physiological strategies for crop improvement. Banaras Hindu Univ., Varanasi, India.

    Google Scholar 

  • ———. 1991b. A herbicide-resistant cyanobacterial mutant derepressed for nitrogen fixation under ammonia-mediated condition. Pp. 98–100in Proc. Golden Jubilee Symp. Indian Soc. Genetics and Plant Breeding (Genetic Research and Education: Current Trends and the Next Fifty Years). Indian Agric. Res. Inst, New Delhi.

    Google Scholar 

  • Mitsui, A., S. Kumazawa, A. Takahashi, H. Ikemoto, S. Cao &T. Arai. 1986. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323: 720–722.

    Article  CAS  Google Scholar 

  • Mohapatra, A. K. &R. C. Jee. 1991. Effect of cyanobacterial biofertilizer on the productivity of lowland rice (Oryza sativa). Indian J. Agron. 36: 240–241.

    Google Scholar 

  • Moore, A. W. 1969.Azolla: Biology and agronomic significance. Bot. Rev. (Lancaster) 35: 17–34.

    Article  CAS  Google Scholar 

  • Mulholland, M. R. &D. G. Capone. 1999. Nitrogen fixation, uptake and metabolism in natural and cultured populations ofTrichodesmium spp. Mar. Ecol. Prog. Ser. 188: 33–49.

    Article  CAS  Google Scholar 

  • ——. 2000. The nitrogen physiology of the marine N2-fixing cyanobacteriaTrichodesmium spp. Trends Pl. Sci. 5: 148–153.

    Article  CAS  Google Scholar 

  • —,K. Ohki &D. G. Capone. 1999. Nitrogen utilization and metabolism relative to patterns of N2 fixation in cultures ofTrichodesmium Nibb 1067. J. Phycol. 35: 977–988.

    Article  CAS  Google Scholar 

  • Murayama, N. 1979. The importance of nitrogen in rice production. Pp. 5–24in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Musgrave, S. C., N. W. Kerby, G. A. Codd &W. D. P. Stewart. 1982. Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacteriumAnabaena 27893. Biotechnol. Lett. 8: 507–512.

    Google Scholar 

  • Newton, J. W. &J. F. Cavins. 1985. Liberation of ammonia during nitrogen fixation by a facultative heterotrophic cyanobacterium. Biochim. Biophys. Acta 809: 44–50.

    Article  CAS  Google Scholar 

  • — &I. Herman. 1979. Isolation of cyanobacteria from the aquatic fern,Azolla. Arch. Microbiol. 120: 161–165.

    Article  Google Scholar 

  • Nierzwicki-Bauer, S. A. 1990.Azolla-Anabaena symbiosis: Use in agriculture. Pp. 119–136in A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL.

    Google Scholar 

  • —&R. Haselkorn. 1986. Differences in mRNA levels inAnabaena living freely or in symbiotic association withAzolla. EMBO J. 5: 29–35.

    PubMed  CAS  Google Scholar 

  • Pandey, D. C. 1965. A study of the algae from paddy soils of Ballia and Ghazipur district of Uttar Pradesh, India: Cultural and ecological considerations. Nova Hedwigia 9: 299–234.

    Google Scholar 

  • Pantastico, J. B. &T. L. Gonzales. 1976. Cultures and use ofNostoc commune as biofertilizer. Kalikaean Philipp. J. Biol. 5: 221–234.

    Google Scholar 

  • Paramanik, S. C. &B. S. Mahapatra. 1997. Effect of integrated use of inorganic and organic N sources on mineralization, uptake and grain yield of rice. Oryza 34: 181–184.

    Google Scholar 

  • Parks, J. M. &J. L. Rice. 1969. Effects of certain plants of old-field succession on the growth of bluegreen algae. Bull. Torr. Bot. Club 96: 345–360.

    Article  Google Scholar 

  • Patnaik, S. &M. V. Rao. 1979. Sources of nitrogen for rice production. Pp. 25–44in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Patterson, G. M. L. 1996. Biotechnological applications of cyanobacteria. J. Sci. & Ind. Res. 55: 669–684.

    CAS  Google Scholar 

  • Pearl, H. W. 1982. Interactions with bacteria. Pp. 441–452in N. G. Carr & B. A. Whitton (eds.), The biology of cyanobacteria. Botanical Monographs, 19. Blackwell Scientific, Oxford.

    Google Scholar 

  • Pedurand, P. &P. A. Reynaud. 1987. Do cyanobacteria enhance germination and growth of rice? Pl. & Soil 101: 235–240.

    Article  Google Scholar 

  • Peters, G. A. 1978. Blue-green algae and algal association. BioScience 28: 580–585.

    Article  Google Scholar 

  • — &H. E. Calvert. 1983. TheAzolla-Anabaena symbiosis. Pp. 109–145in L. J. Goff (ed.), Algal symbiosis: A continuum of interaction strategies. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • — &B. C. Mayne. 1974. TheAzolla-Anabaena azollae relationship, II: Localization of nitrogenase activity as assayed by acetylene reduction. Pl. Physiol. (Rockville) 58: 820–840.

    Google Scholar 

  • — &J. C. Meeks. 1989. TheAzolla-Anabaena symbiosis: Basic biology. Annual Rev. Pl. Physiol. P1. Molec. Biol. 40: 193–210.

    Article  Google Scholar 

  • —,R. E. Toia Jr., W. R. Evans, D. K. Crist, B. C. Mayne &R. E. Poole. 1980. Characterization and comparisons of five N2-fixingAzolla-Anabaena associations, I: Optimization of growth conditions for biomass increase and N content in a controlled environment. Pl. Cell Environ. 3:261–269.

    Google Scholar 

  • —,D. Kaplan, J. C. Meeks, K. N. Buzby, B. Marsh &J. L. Corbin. 1985. Aspects of nitrogen and carbon interchange in theAzolla-Anabaena symbiosis. Pp. 213–222in P. W. Ludden & J. E. Burris (eds.), Nitrogen fixation and CO2 metabolism. Elsevier Science, New York.

    Google Scholar 

  • —,R. E. Toia Jr., H. E. Calvert &B. H. Marsh. 1986. Lichens toGunnera with emphasis onAzolla. Pl. & Soil 90: 17–34.

    Article  Google Scholar 

  • Plazinski, C. 1990. TheAzolla-Anabaena symbiosis. Pp. 51–75in P. M. Gresshoff (ed.), Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Polukhina, L. E., G. N. Shakhurieva &S. V. Shestakov. 1982. Ethylenediamine-resistantAnabaena variabilis mutants with derepressed nitrogen-fixing system. Microbiology 51: 90–95.

    CAS  Google Scholar 

  • Prasad, A. B. &A. Vaishampayan. 1984. Genetic recombination inNostoc muscorum strains. Pp. 179–184in G. Manna & U. Sinha (eds.), Perspectives in cytology & genetics. Typographers Rashtravani Press, New Delhi.

    Google Scholar 

  • ——. 1987. Genetic dissections in cyanobacteria. Pp. 253–284in A. B. Prasad (ed.), Mutagenesis: Basic and applied. Print House, Lucknow, India.

    Google Scholar 

  • ——. 1994a. Prospects of using pesticide-resistant cyanobacterial mutants as a viable bio-N fertilizer and a source material for genetic engineering studies. Pp. 47–70in A. B. Prasad & A. Vaishampayan (eds.), Biology and application of nitrogen-fixing organisms: Problems and prospects. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • —— (eds.). 1994b. Biology and application of nitrogen-fixing organisms: Problems and prospects. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • —,R. Samanta, M. L. Vishwakarma &A. Vaishampayan. 1986. Biological effects of a mercury fungicide on a nitrogen-fixing blue-green algaNostoc muscorum: Isolation and preliminary characterization of a Hg-resistant mutant. New Phytol. 102: 45–50.

    Article  CAS  Google Scholar 

  • —,A. Vaishampayan, M. L. Vishwakarma &D. K. Shrivastava. 1991. Development of fungicide-resistance, coupled with N2-fixing ability during NH +4 mediated growth, as a mutational event, in a cyanobacteriumNostoc muscorum. Biomedical Lett. 46: 245–251.

    CAS  Google Scholar 

  • Prasad, B. N. &P. N. Srivastava. 1968. Systematic and ecological studies on algae of alkaline (Usar) soils. Phykos 7:102–111.

    Google Scholar 

  • Qian-Lin, W., L. Yong Ding, S. Yin-Wu, J. Chuan-Yin, L. Jin-Shu, Z. Jia-Min &L. Shang-Hao. 1991. Studies on mixed mass cultivation ofAnabaena sp. on a large scale. Bioresources Technol. 38: 221–228.

    Article  Google Scholar 

  • Querijero-Palacpac, N. M., M. Milagrosa &S. Boussiba. 1990. Mass cultivation of the nitrogenfixing cyanobacteriumGloeotrichia natans, indigenous to rice-fields. J. Appl. Phycol. 2:319–325.

    Article  CAS  Google Scholar 

  • Quesada, A., M. Nieva, E. Leganes, A. Ucha, C. Prosperi &E. Fernandez-Valiente. 1998. Acclimation of cyanobacterial communities in rice fields and response of nitrogenase activity to light regime. Microbial Ecol. 35: 147–155.

    Article  CAS  Google Scholar 

  • Quing-Yuan, X., S. Yan-Ru, Y. Guang-Li &P. Ke-Lin. 1987. Germination ofAzolla filiculoides Lam.: Sporocarps and factors affecting their growth. Pp. 33–38 inAzolla utilization. Int. Rice Res. Inst., Manila.

    Google Scholar 

  • Rai, A. N. 1990. Cyanobacteria in symbiosis. Pp. 1–7in A. N. Rai (ed.), Handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Rains, D. W. &S. N. Talley. 1979. Use ofAzolla in North America. Pp. 419–436in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Rakotonaivo, G. &M. Schramm. 1988. Influence of P, K, micronutrients and dolomite onAzolla growth. Int. Rice Res. Newslett. 13: 23–24.

    Google Scholar 

  • Ramos, J. L., M. G. Guerrero &M. Losada. 1983. Optimization of conditions for ammonia photoproduction by the nitrogen-fixing cyanobacteriumAnabaena sp. strain ATCC 33047. Pp. 877–884in Biotech 83: Proc. Int. Conf. on the Commercial Applications and Implications of Biotechnology. Online Publs., Northwood, England.

    Google Scholar 

  • ———. 1984. Sustained photoproduction of ammonia from dinitrogen and water by the nitrogen-fixing cyanobacteriumAnabaena sp. strain 33047. Appl. Environ. Biotechnol. 48: 114–118.

    CAS  Google Scholar 

  • ———. 1987. Factors affecting the photoproduction of ammonia from dinitrogen and water by the cyanobacteriumAnabaena sp. strain ATCC 33047. Biotechnol. Bioengineer. 29: 566–571.

    Article  CAS  Google Scholar 

  • Rao, D. L. N. &R. G. Burns. 1990. The effect of surface growth on blue-green algae and bryophytes on some microbiological, biochemical and physical soil properties. Biol. Fertility Soils 9: 239–244.

    Article  CAS  Google Scholar 

  • Rao, J. L., A. Venkatachari, S. W. V. B. Rao &R. K. Reddy. 1977. Individual and combined effects of bacterial and algal inoculation on the yield of rice. Curr. Sci. 46: 50–51.

    Google Scholar 

  • Rao, T. R. 1978. Blue-green algae boost rice yields. Intensive Agric. 16: 19–20.

    Google Scholar 

  • Rathore, A. L., S. J. Cbipe &A. R. Pal. 1995. Direct and residual effects of bio-organic and inorganic fertilizers in rice-wheat cropping system. Indian J. Agron. 40: 14–19.

    Google Scholar 

  • Ray, T. B., G. A. Peters, R. E. Toia Jr. &B. C. Mayne. 1978.Azolla-Anabaena relationship, VI: Distribution of ammonia assimilating enzymes, proteins and chlorophyll between host and symbiont. Pl. Physiol. (Rockville) 62: 463–467.

    CAS  Google Scholar 

  • —,B. C. Mayne, R. E. Toia Jr. &G. A. Peters. 1979.Azolla-Anabaena relationship, VIII: Photosynthetic characterization of the association and the individual partners. Pl. Physiol. (Rockville) 64: 791–795.

    CAS  Google Scholar 

  • Reddy, P. M. &P. A. Roger. 1988. Dynamics of algal populations and acetylene reducing activity in five rice soils inoculated with blue-green algae. Biol. Fertility Soils 6: 14–21.

    Article  Google Scholar 

  • Reich, S. &P. Böger. 1989. Regulation of nitrogenase activity inAnabaena variabilis by modification of the Fe protein. FEMS Microbiol. Lett. 58: 81–86.

    Article  CAS  Google Scholar 

  • —,H. Almon &P. Böger. 1986. Short-term effect of ammonia on nitrogenase activity ofAnabaena variabilis (ATCC 29413). FEMS Microbiol. Lett. 34: 53–56.

    Article  CAS  Google Scholar 

  • Reisser, W. 1984. Endosymbiotic cyanobacteria and cyanellae. Pp. 91–133in H. F. Linskens & J. Heslop-Harrison (eds.), Cellular interactions. Encyclopedia of plant physiology, n.s., 17. SpringerVerlag, Berlin.

    Google Scholar 

  • Reynaud, P. A. 1982. The use ofAzolla in West Africa. Pp. 565–566in P. H. Graham & S. C. Harris (eds.), Biological nitrogen fixation technology for tropical agriculture. Centra Int. de Agric. Trop., Cali, Colombia.

    Google Scholar 

  • Rhodes, D., A. P. Sims &B. F. Folkes. 1980. Pathway of ammonium assimilation in illuminatedLemna minor. Phytochemistry 19: 357–365.

    Article  CAS  Google Scholar 

  • Rice, E. L., C. Y. Lin &C. Y. Huang. 1980. Effects of decaying rice straw on growth and nitrogen fixation of a blue-green alga. Bot. Bull. Acad. Sinica 21:111–117.

    CAS  Google Scholar 

  • Richmond, A. 1990. Large scale microalgal culture and applications. Prog. Phycol. Res. 7: 269–230.

    CAS  Google Scholar 

  • Rodgers, G. A. 1982. Effect of ammonia or nitrate on nitrogen fixation by a terrestrial blue-green alga. Pl. & Soil 64: 263–266.

    Article  CAS  Google Scholar 

  • Roger, P. A. 1991. Reconsidering the utilization of blue-green algae in wetland rice cultivation. Pp. 119–141in S. K. Dutta & C. Sloger (eds.), Biological nitrogen fixation associated with rice production. Howard University Press, Washington, DC.

    Google Scholar 

  • —. 1980. Blue-green algae and rice. Int. Rice Res. Inst, Los Baños, Philippines.

    Google Scholar 

  • — &I. Watanabe. 1986. Techniques for utilizing biological nitrogen fixation in wetland rice: Potentialities, current usage and limiting factors. Fertilizer Res. 9: 39–77.

    Article  Google Scholar 

  • —,S. Santiago-Ardales, P. M. Reddy &I. Watanabe. 1987. The abundance of heterocystous blue-green algae in rice soils and inocula used for application in rice fields. Biol. Fertility Soils 5: 98–105.

    Article  Google Scholar 

  • —,W. J. Zimmerman &T. Lumpkin. 1993. Microbiological management of wetland rice fields. Pp. 417–455in F. B. Metting Jr. (ed.), Soil microbial ecology: Applications in agricultural and environmental management. M. Dekker, New York.

    Google Scholar 

  • Rother, J. A. &B. A. Whitton. 1989. Nitrogenase activity of blue-green algae on seasonally flooded soils in Bangladesh. Pl. & Soil 113: 47–52.

    Article  Google Scholar 

  • —,A. Aziz, H. N. Karim &B. A. Whitton. 1988. Ecology of deepwater rice-fields in Bangladesh, 4: Nitrogen fixation by blue-green algal communities. Hydrobiologia 169: 43–56.

    Article  Google Scholar 

  • Roy, B. 1984. Manuring of rice withAzolla. Oryza 21: 238–241.

    Google Scholar 

  • Roychoudhury, P. &B. D. Kaushik. 1989. Solubilization of Mussorie rock phosphate by cyanobacteria. Curr. Sci. 58: 569–570.

    CAS  Google Scholar 

  • —,G. S. R. Krishnamurti &G. S. Venkataraman. 1980. Effect of algal inoculation on soil aggregation in rice soils. Phykos 19: 224–227.

    Google Scholar 

  • Sah, R. N., S. S. Goyal &D. W. Rains. 1989. Effect of light on NO3 transport byAzolla pinnata. J. Exp. Bot. 214: 543–549.

    Article  Google Scholar 

  • Saha, K. C. &L. N. Mandai. 1979. Effect of algal growth on the availability of phosphorus, iron and manganese in rice soil. Pl. & Soil 52: 139–146.

    Article  CAS  Google Scholar 

  • Salawar, M. O. A. 1992. Effect of the use of N-urea and N-Azolla on different yield parameters of rice (Oryza sativa L.). Chilián (Chile) 70–71.

  • Saleh, M. A., T. L. Kea &G. Osman. 1989. Plasmid-mediated resistance to paraquat in soil isolate ofPseudomonas species. Malayas Appl. Biol. J. 18:1–8.

    Google Scholar 

  • Sankaran, A. 1971. Blue-green algae in relation to agriculture. Indian Council of Agric. Res. Publs., New Delhi.

    Google Scholar 

  • Sardeshpande, J. S. 1981. Studies on nitrogen-fixing blue-green algae from paddy field soils of Konkan regions of Maharashtra State. Ph.D. diss., Indian Agric. Res. Institute.

  • — &S. K. Goyal. 1981a. Distribution pattern of blue-green algae in rice-field soils of Konkan regions of Maharashtra State. Phykos 20: 102–106.

    Google Scholar 

  • ——. 1981b. Effect of pH on growth and nitrogen fixation by blue-green algae. Phykos 20: 107–113.

    Google Scholar 

  • ——. 1982. Effect of insecticides on growth and nitrogen fixation by blue-green algae. Pp. 558–605in B. D. Kaushik (ed.), Proc. Nat. Symp. Biological Nitrogen Fixation. Indian Agric. Res. Inst., New Delhi.

    Google Scholar 

  • Sarkar, R. K., A. Saha &T. Furutani. 1997. Photosynthesis and productivity of rice at two levels of nitrogen. Oryza 34: 28–33.

    Google Scholar 

  • Sathiyamoorthy, P. S. &S. Shanmugasundaram. 1992. Polybag bottle: A culture system for cyanobacteria. P. 39in Abstr. 32d Annual Conf. Agric. Microbiol., Madurai Kamraj Univ., Madurai, India.

    Google Scholar 

  • Satpathy, K. B. 1993. Effect of different plant spacing pattern on the growth ofAzolla and rice. Indian J. Pl. Physiol. 36: 98–102.

    Google Scholar 

  • Saville, B., N. Straus &J. R. Coleman. 1987. Contiguous organization of nitrogenase genes in a heterocystous cyanobacterium. Pl. Physiol. (Rockville) 85: 26–29.

    CAS  Google Scholar 

  • Schmitz, S., B. Schrautemeier &H. Böhme. 1993. Evidence from directed mutagenesis that positively charged amino acids are necessary for interaction of nitrogenase with the (2Fe-2S) heterocyst ferredoxin (FdxH) from the cyanobacteriumAnabaena sp. PCC 7120. Molec. Gen. Genet. 240: 455–460.

    PubMed  CAS  Google Scholar 

  • Schopf, J. W. 1970. Precambrian microorganisms and evolutionary events prior to the origin of vascular plants. Biol. Rev. (London) 45: 319–353.

    Google Scholar 

  • —&B. M. Packer. 1987. Early Archean (3.3 billion to 3.5 billion year old) micro fossils from Warrawoona Group, Australia. Science 237: 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Schrautemeier, B. &H. Böhme. 1985. A distinct ferredoxin for nitrogen fixation isolated from heterocysts of the cyanobacteriumAnabaena variabilis. FEMS Microbiol. Lett. 184: 304–308.

    CAS  Google Scholar 

  • Semenova, L. R., L. A. Mineyeva &M. V. Gusev. 1982. The effect of osmotic stabilizing agents on the formation of spheroplasts in cyanobacteria and their photosynthetic activity. Mikrobiologiya 52: 259–271.

    Google Scholar 

  • Shah, A. K. &B. S. Vaidya. 1977. Detection of vitamin B-12 and pantothenic acid in cell exudates of blue-green algae. Biol. Pl. 19: 426–431.

    Article  CAS  Google Scholar 

  • Sharma, B. M. &R. S. Gupta. 1983. Effect of algal application on rice yield in Jammu Division. Phykos 22: 176–179.

    Google Scholar 

  • —— &P. M. Kerni. 1986. Effect of recurring use of blue-green algae on submerged rice yield. Pp. 199–200in R. Singh, H. S. Nainawatee & S. K. Sawhney (eds.), Current status of biological nitrogen fixation research. Haryana Agric. Univ., Hissar, India.

    Google Scholar 

  • Shi, D.-J. &D. O. Hall. 1988. TheAzolla-Anabaena association: Historical perspective, symbiosis and energy metabolism. Bot. Rev. (Lancaster) 54: 253–386.

    Article  Google Scholar 

  • —,M. Brouers, D. O. Hall &R. J. Robins. 1987. The effects of immobilization on the biochemical, physiological and morphological featuresof Anabaena azollae. Planta 172: 298–308.

    Article  Google Scholar 

  • —,W. Yong-xu &F. Zhao-xi. 1991. The effects of immobilization on photosynthesis, growth, nitrogen fixation and ammonium ion excretion of mutant and wild type cells of anAnabaena variabilis. Acta Bot. Sinica 33: 335–342.

    CAS  Google Scholar 

  • Shield, L. M. &L. W. Durrell. 1964. Algae in relation to soil fertility. Bot. Rev. (Lancaster) 30: 93–128.

    Google Scholar 

  • Shtima, E. A. 1972. Some peculiarities of the distribution of nitrogen-fixing blue-green algae in soils. Pp. 294–295in T. V. Desikachary (ed.), Taxonomy and biology of blue-green algae. Madras Univ., Centre for Advanced Study in Botany, Madras, India.

    Google Scholar 

  • Shuying, L. 1987. Methods of usingAzolla filiculoides sporocarps to culture sporophytes in the field. Pp. 27–32 inAzolla utilization. Int. Rice Res. Inst, Manila.

    Google Scholar 

  • Singh, A. L. 1994. Use of Azolla-cyanobacterial symbiosis in rice culture. Pp. 95–118in A. B. Prasad & A. Vaishampayan (eds.), Biology and application of nitrogen-fixing organisms: Problems and prospects. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • — &P. K. Singh. 1986. Nitrogen fixation studies of rice soils. Pp. 195–196in R. Singh, H. S. Nai-nawatee & S. K. Sawhney (eds.), Current status of biological nitrogen fixation research. Haryana Agric. Univ., Hissar, India.

    Google Scholar 

  • ——. 1987. Nitrogen fixation and balance studies of rice soils. Biol. Fertility Soils 4: 15–19.

    Google Scholar 

  • — &P. L. Singh. 1989. Nitrogen fixation in Indian rice fields (Azolla and blue-green algae). AgroBotanical Publishers, Bikaner, India.

    Google Scholar 

  • —,P. K. Singh &P. L. Singh. 1988. Effect of different herbicides on theAzolla and blue-green algal biofertilization of rice. J. Agric. Sci. (Cambridge) 111: 451–458.

    CAS  Google Scholar 

  • Singh, B. V., S. K. Goyal &T. Fatma. 1995. pH tolerance in certain Cyanobacteria. Phykos 34:97–103.

    CAS  Google Scholar 

  • Singh, D. P. &P. K. Singh. 1995. Response ofAzolla caroliniana and rice to phosphorus enrichment ofAzolla inoculum and phosphorus fertilization during intercropping. Exp. Agric. 31: 21–26.

    CAS  Google Scholar 

  • Singh, D. T., K. Nirmala, D. R. Modi, S. Katiyar &H. N. Singh. 1987. Genetic transfer of herbicideresistance gene(s) fromGloeocapsa spp. toNostoc muscorum. Molec. Gen. Genet. 208:436–438.

    Article  CAS  Google Scholar 

  • Singh, H. N. &H. N. Singh Jr. 1978. An azide-resistant mutant of the blue-green algaNostoc muscorum producing heterocysts and nitrogenase in the presence of fixed inorganic nitrogen source. Arch. Microbiol. 119:197–201.

    Article  CAS  Google Scholar 

  • — &K. C. Sonie. 1977. Isolation and characterization of chlorate-resistant mutants of the bluegreen algaNostoc muscorum. Mutat. Res. 43: 205–212.

    PubMed  CAS  Google Scholar 

  • — &A. Vaishampayan. 1978. Biological effects of rice-field herbicidemachete on various strains of the N2-fixing blue-green algaNostoc muscorum. Environ. & Exp. Bot. 18: 87–94.

    Article  CAS  Google Scholar 

  • ——R. K. Singh. 1978a. Evidence for the Involvement of a genetic determinant controlling functional specificity of group VI-B elements in N2 and NO -3 metabolism in a blue-green algaNostoc muscorum. Biochem. Biophys. Res. Comm. 81: 67–74.

    Article  PubMed  CAS  Google Scholar 

  • —— &K. C. Sonie. 1978b. Mutation from Mo-dependent growth to W-dependent growth and further evidence for a genetic determinant common to nitrogenase and nitrate reductase in a blue-green algaNostoc muscorum. Mutat. Res. 50: 427–432.

    CAS  Google Scholar 

  • —,H. R. Singh &A. Vaishampayan. 1979. Toxic and mutagenic action of the herbicide alachlor (lasso) on various strains of a N2-fixing blue-green algaNostoc muscorum and characterization of herbicide-induced mutants resistant to methylamine and L-methionine-DL-sulfoximine. Environ. & Exp. Bot. 19:5–12.

    Article  CAS  Google Scholar 

  • Singh, N. I., N. S. Singh, G. A. Devi &S. M. Singh. 1997a. Blue-green algae from rice growing areas of Arunachal Pradesh. Phykos 36: 21–26.

    Google Scholar 

  • —,H. Dorycanta, G. A. Devi, N. S. Singh &S. M. Singh. 1997b. Blue-green algae from rice soils of Nagaland. Phykos 36: 115–120.

    Google Scholar 

  • Singh, P. K. 1974. Algicidal effect of 2,4-dichlorophenoxyacetic acid on blue-green algaCylindrospermum sp. Arch. Microbiol. 97: 60–62.

    Article  Google Scholar 

  • —. 1975. Fertilizer tolerance of blue-green algae and their effect on heterocyst differentiation. Phykos 14: 81–88.

    Google Scholar 

  • —. 1976. Algal inoculation and its growth in water-logged rice fields. Phykos 15: 5–10.

    Google Scholar 

  • —. 1977a. Multiplication and utilization of fernAzolla containing nitrogen-fixing algal symbiont as green manure in rice cultivation. Riso 26:125–136.

    Google Scholar 

  • —. 1977b.Azolla plant as fertilizer and feed. Indian Farming 27: 19–21.

    Google Scholar 

  • —. 1978. Nitrogen economy of rice soils in relation to nitrogen fixation by blue-green algae andAzolla. Pp. 18–27in Nat. Symp. on Increasing Rice Yield of Kharif. Central Rice Res. Inst., Cuttack, India.

    Google Scholar 

  • —. 1979. Use ofAzolla in rice production in India. Pp. 407–418in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • —. 1980. Introduction of greenAzolla biofertilizer in India. Curr. Sci. 49: 155–156.

    Google Scholar 

  • —. 1981. Use ofAzolla and blue-green algae in rice cultivation in India. Pp. 183–195in P. B. Vose & A. P. Puschel (eds.), Associative N2 fixation. CRC Press, Boca Raton, FL.

    Google Scholar 

  • —. 1984. Growth factor for mass production and isolation of derepressed dinitrogen fixing mutants in blue-green algae. P. 200in VII International Biotechnology Symposium. Biochemical Engineering Research Centre, Hauz Khas, New Delhi (abstract).

    Google Scholar 

  • —. 1985. Nitrogen fixation by blue-green algae in paddy fields. Pp. 344–362in P. L. Jaiswal (ed.), Rice research in India. Indian Council of Agric. Res., New Delhi.

    Google Scholar 

  • —. 1988. Biofertilization of rice crop. Pp. 109–114in S. P. Sen & P. Palit (eds.), Biofertilizers: Potentialities and problems. Plant Physiology Forum, Calcutta.

    Google Scholar 

  • —. 1989. Use ofAzolla in Asian agriculture. Appl. Agric. Res. 4: 149–161.

    Google Scholar 

  • — &R. N. Bisoyi. 1989. Blue-green algae in rice fields. Phykos 28: 181–195.

    Google Scholar 

  • — &D. P. Singh. 1997.Azolla-Anabaena symbiosis. Pp. 126–146in K. R. Dadarwal (ed.), Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • —,B. C. Panigrahi &K. B. Satpathy. 1981. Comparative efficiency ofAzolla, blue-green algae and other organic manures in relation to N and P availability in a flooded rice soil. Pl. & Soil 62:35–44.

    Article  Google Scholar 

  • —,K. B. Satpathy, S. P. Mishra, S. K. Nayak &R. M. Patra. 1982. Application ofAzolla in rice cultivation. Pp. 423–450in Proc. Nat. Symp. Biological Nitrogen Fixation. Indian Agric. Res. Inst., New Delhi.

    Google Scholar 

  • —,D. P. Singh &R. P. Singh. 1996. Germination of water fernAzolla caroliniana sporocarps at varied light, amino acid, sugars and ABA. Proc. Indian Natl. Acad. Sci., Part B, Biol. Sci. 62:352–358.

    Google Scholar 

  • Singh, R. N. 1950. Reclamation of usar lands in India through blue-green algae. Nature 165: 325–326.

    Article  Google Scholar 

  • —. 1961. Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agric. Res., New Delhi.

    Google Scholar 

  • Singh, S. 1990. Urea uptake in the cyanobacteriaAnabaena doliolum andAnacystis nidulans. Indian J. Exp. Biol. 28: 378–379.

    CAS  Google Scholar 

  • —,R. Prasad, B. V. Singh, S. K. Goyal &S. N. Sharma. 1990. Effect of green manuring, bluegreen algae and neem-cake coated urea on wetland rice. Biol. Fertility Soils 9: 235–238.

    Article  Google Scholar 

  • Singh, Y. V. &B. K. Mandai. 1997. Nutrition of rice,Oryza sativa, throughAzolla organic materials and urea. Indian J. Agron. 42: 623–633.

    Google Scholar 

  • Sinha, J. P. &S. Pandey. 1972. Blue-green algae of paddy fields of Chota Nagpur, Bihar. Proc. Indian Sci. Congr. Assoc. 59: 295–296.

    Google Scholar 

  • Sinha, R. P. &D.-P. Häder. 1996a. Photobiology and ecophysiology of rice field cyanobacteria. Photochem. & Photobiol. 64: 887–896.

    Article  CAS  Google Scholar 

  • —— 1996b. Response of a rice field cyanobacteriumAnabaena sp. to physiological Stressors. Environ. & Exp. Bot. 36: 147–155.

    Article  CAS  Google Scholar 

  • ——. 1997. Impacts of UV-B irradiation on rice field cyanobacteria. Pp. 189–197in D.-P. Häder (ed.), The effects of ozone depletion on aquatic ecosystems. Academic Press, San Diego, CA; R. G. Landes, Austin.

    Chapter  Google Scholar 

  • —,A. Vaishampayan &D.-P. Häder. 1998. Plant-cyanobacterial symbiotic somaclones as a potential bionitrogen fertilizer for paddy agriculture: Biotechnological approaches. Microbiol. Res. 153: 297–307.

    CAS  Google Scholar 

  • —,M. Klisch, A. Vaishampayan &D.-P. Häder. 1999. Biochemical and spectroscopic characterization of the cyanobacteriumLyngbya sp. inhabiting mango (Mangifera indica) trees: Presence of an ultraviolet-absorbing pigment, scytonemin. Acta Protozool. 38: 291–298.

    CAS  Google Scholar 

  • Sisworo, E. L., D. L. Eskew, W. H. Sisworo, H. Rasjid, H. Kadarusman, S. Solahuddin &G. Scopandi. 1990. Studies on the availability ofAzolla nitrogen and urea nitrogen for rice growth using N15. Pl. & Soil 128: 209–220.

    Article  CAS  Google Scholar 

  • Smith, R. L., C. van Baalen &F. R. Tabita. 1987. Alteration of the Fe protein of nitrogenase by oxygen in the cyanobacteriumAnabaena sp. strain CA. J. Bacteriol. 169: 2537–2542.

    PubMed  CAS  Google Scholar 

  • Solaiman, M. Z., Z. H. Bhuiya, M. S. Haque &M. Jahiruddin. 1994. Effectof Azolla and urea on yield of rice. Indian J. Agric. Res. 28: 149–153.

    Google Scholar 

  • Solheim, B., A. Endal &H. Vigstad. 1996. Nitrogen fixation in Arctic vegetation and soils from Svalbard, Norway. Polar Biol. 16: 35–40.

    Google Scholar 

  • Spiller, H., H. C. Lattore, M. E. Hassan &K. T. Shanmugam. 1986. Isolation and characterization of nitrogenase derepressed mutants of the cyanobacteriumAnabaena variabilis. J. Bacteriol.165:412–419.

    PubMed  CAS  Google Scholar 

  • Srinivasan, S. &J. H. S. Ponnaya. 1978. Judiciouis use of chemoand bio-fertilizers in crop production. Pp. 230–231in Proc. Seminar on the Development of Complementary Use of Mineral Fertilizers and Organic Materials in India. Food and Agric. Org., Norway.

    Google Scholar 

  • Stal, L. J. &W. E. Krumbein. 1985. Nitrogenase activity in the non-heterocystous cyanobacteriumOscillatoria sp. grown under alternating light-dark cycles. Arch. Microbiol. 143: 67–71.

    Article  CAS  Google Scholar 

  • Stangel, P. J. 1979. Nitrogen requirement and adequacy of supply for rice production. Pp. 45–72in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Stanier, R. Y., R. Kunisawa, M. Mandel &G. Cohen-Bazire. 1971. Purification and properties of unicellular blue-green algae (order Chrococcales). Bacteriol. Rev. 35:171–183.

    PubMed  CAS  Google Scholar 

  • Stewart, W. D. P. 1967. Transfer of biologically fixed nitrogen in a sand-dune slack region. Nature 214: 603–604.

    Article  Google Scholar 

  • —. 1970. Algal fixation of atmospheric nitrogen. Pl. & Soil 32: 555–558.

    Article  CAS  Google Scholar 

  • —. 1980. Some aspects of structure and function of N2-fixing Cyanobacteria. Annual Rev. Microbiol. 34: 497–536.

    Article  CAS  Google Scholar 

  • — &M. Lex. 1970. Nitrogenase activity in the blue-green algaePlectonema boryanum strain 594. Arch. Microbiol. 73: 250–260.

    CAS  Google Scholar 

  • — &P. Rowell. 1975. Effects of L-methionine-DL-sulfoxcimine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production inAnabaena cylindrical. Biochem. Biophys. Res. Comm. 65: 846–856.

    Article  PubMed  CAS  Google Scholar 

  • — &A. N. Rai. 1980. Symbiotic nitrogen-fixing cyanobacteria. Pp. 239–277in W. D. P. Stewart & J. R. Gallon (eds.), Nitrogen fixation: Proceedings of the Phytochemical Society of Europe symposium, Sussex, September, 1979. Academic Press, New York.

    Google Scholar 

  • —. 1983. Cyanobacteria-eukaryotic plant symbioses. Ann. Microbiol. 134: 205–214.

    Google Scholar 

  • Street, H. E. 1977. Cell (suspension) culture: Techniques. Pp. 61–89in H. E. Street (ed.), Plant tissue and cell culture. Botanical monographs, 11. Blackwell Scientific, Oxford.

    Google Scholar 

  • Subhashini, D. &B. D. Kaushik. 1981. Amelioration of sodic soils with blue-green algae. Austral. J. Soil Res. 19:361–366.

    Article  Google Scholar 

  • Subrahmanyan, R. 1972. Some observations on utilization of blue-green algal mixtures in rice cultivation in India. Pp. 281–293in T. V. Desikachary (ed.), Taxonomy and biology of blue-green algae. Madras Univ., Centre for Advanced Study in Botany, Madras, India.

    Google Scholar 

  • Subramani, S. A., C. Narayan, S. Srinivasan &B. Chandrasekharam (eds.). 1980. Proceedings of FAI Seminar on Fertilizers in India in Eightees. Tamil Nadu Agricultural University, India.

    Google Scholar 

  • Subramanian, G. &S. Shanmugasundaram. 1986a. Influence of herbicide 2,4-D on nitrogen fixation and ammonia excretion by the cyanobacteriaAnabaena. Proc. Indian Natl. Acad. Sci., Part B, Biol. Sci. 52: 308–312.

    CAS  Google Scholar 

  • ——. 1986b. Uninduced ammonia released by nitrogen-fixing cyanobacteriaAnabaena. FEMS Microbiol. Lett. 37:151–154.

    Article  CAS  Google Scholar 

  • Suleimanova, S. S. &L. A. Mineyeva. 1981. Effects of high light intensity on growth and pigment content of cyanobacteria under conditions of photoautoand photoheterotrophic cultivation. Vestn. Moskovsk. Univ., Ser. Biol. 1: 42–53.

    Google Scholar 

  • Suresb, G., T. N. Gopinath, D. Kathiresan, C. R. Marutharavindran &S. Shanmugasundaram. 1992. Growth of cyanobacteria in sachet packs. P. 39in Abstr. 32d Annual Conf. Agric. Microbiol., Madurai Kamraj Univ., Madurai, India.

    Google Scholar 

  • Suseela, M. R. &S. K. Goyal. 1995. Effect of ammonium nitrogen on growth and nitrogen fixation by cyanobacteria. Phykos 34: 123–130.

    Google Scholar 

  • Svircev, Z., I. Tamas, P. Nenin &A. Drobac. 1997. Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl. Soil Ecol. 6: 301–308.

    Article  Google Scholar 

  • Talley, S. N., B. J. Talley &D. W. Rains. 1977. Nitrogen fixation byAzolla in rice fields. Pp. 259–281in A. Hollaender, R. H. Burris, P. R. Day, R. W. F. Hardy, D. R. Helinsky, M. R. Lomborg, L. Owens & R. C. Valentine (eds.), Genetic engineering for nitrogen fixation. Basic Life Sciences. Plenum Press, New York.

    Google Scholar 

  • Tel-Or, E., T. Sandovsky, D. Kobiler, C. Arad &R. Weinberg. 1983. The unique symbiotic properties ofAnabaena in the water fernAzolla. Pp. 303–314in G. C. Papageorgiou & L. P. Packer (eds.), Photosynthetic prokaryotes: Cell differentiation and function. Elsevier Biomedical, New York.

    Google Scholar 

  • Thangaraju, M. &S. Kannaiyan. 1993. Effect of nitrogen-fixing water-fernAzolla and different forms of urea application on growth, nitrogen uptake and grain yield of rice crop. Acta Agrobot. Hung. 42: 69–76.

    Google Scholar 

  • Thomas, J. 1977. Biological nitrogen fixation. Nuclear India 1: 2–6.

    Google Scholar 

  • — &S. K. Apte. 1984. Sodium requirement and metabolism in nitrogen-fixing cyanobacteria. J. Biosci. 6: 771–794.

    Article  CAS  Google Scholar 

  • Thomas, S. P., A. Zaritsky &S. Boussiba. 1990. Ammonium excretion by an L-methionine-DLsulfoximine-resistant mutant of the rice-field cyanobacteriumAnabaena siamensis. Appl. & Environ. Microbiol. 56: 3499–3504.

    CAS  Google Scholar 

  • Tirol, A., P. A. Roger &I. Watanabe. 1982. Fate of nitrogen from a blue-green alga in a flooded rice soil. Soil Sci. Pl. Nutr. 28: 559–569.

    CAS  Google Scholar 

  • Tisdale, S. L. &W. L. Nelson. 1975. Soil fertility and fertilizers. Ed. 3. Macmillan, New York.

    Google Scholar 

  • Tiwari, D. N., A. K. Pandey &A. K. Mishra. 1981. Action of 2,4-D and rifampicin on growth and heterocyst formation inNostoc linckia. J. Biol. Sci. 3: 38–39.

    Google Scholar 

  • —,A. Kumar &A. K. Mishra. 1991. Use of cyanobacterial diazotrophic technology in rice agriculture. Appl. Biochem. Biotechnol. 28/29: 387–396.

    Article  Google Scholar 

  • Tiwari, G. L. 1975. A study of the blue-green algae from paddy field soils of India, II: Taxonomic considerations of non-heterocystous blue-green algae. Nova Hedwigia 16: 765–798.

    Google Scholar 

  • — &R. S. Pandey. 1976. A study of the blue-green algae from paddy field soils of India, III: Nostocaceae. Nova Hedwigia 17: 701–730.

    Google Scholar 

  • Tuan, D. T. &T. Q. Thuyet. 1979. Use ofAzolla in rice production in Vietnam. Pp. 395–405in Nitrogen and rice. Int. Rice Res. Inst, Los Baños, Philippines.

    Google Scholar 

  • Tung, H. F. &T. C. Shen. 1985. Studies of theAzolla pinnata andAnabaena azollae symbiosis: Concurrent growthof Azolla with rice. Aquatic Bot. 22: 145–152.

    Article  CAS  Google Scholar 

  • — &I. Watanabe. 1983. Differential response ofAzolla-Anabaena association to high temperature and minus phosphorus treatments. New Phytol. 93: 423–431.

    Article  CAS  Google Scholar 

  • Tyagi, V. V. S., B. C. Mayne &G. A. Peters. 1980. Purification and initial characterization of phycobiliproteins from the endophytic cyanobacterium ofAzolla. Arch. Microbiol. 128: 41–44.

    Article  CAS  Google Scholar 

  • —,T. B. Ray, B. C. Mayne &G. A. Peters. 1981. TheAzolla-Anabaena azollae relationship, XI: Phycobiliproteins in the action spectrum for nitrogenase-catalyzed acetylene reduction. Pl. Physiol. (Rockville) 68: 1479–1484.

    CAS  Google Scholar 

  • Uheda, E. 1986. Isolation of empty packets from Anabaena-freeAzolla. Pl. Cell Physiol. 27: 1187–1190.

    Google Scholar 

  • Vaishampayan, A. 1981. Nutritional screening of amino acids in an auxotroph mutant of the cyanobacteriumNostoc muscorum. Microbios Lett. 18: 111–116.

    CAS  Google Scholar 

  • —. 1982a. Amino acid nutrition in the blue-green algaNostoc muscorum. New Phytol. 90: 545–549.

    Article  CAS  Google Scholar 

  • —. 1982b. A methylamine-resistant mutant of the blue-green alga,Nostoc muscorum: Possible involvement of glutamine synthetase in methylamine metabolism. New Phytol. 91: 607–613.

    Article  CAS  Google Scholar 

  • —. 1982c. Cu-Fe interactions in the nitrogen-fixing cyanobacteriumNostoc muscorum. Microbios Lett. 21: 17–23.

    CAS  Google Scholar 

  • —. 1983a. Mo-V interactions during N2 and NO -3 metabolism in a N2-fixing blue-green algaNostoc muscorum. Experientia 39: 358–360.

    Article  CAS  Google Scholar 

  • —. 1983b. Vanadium as a trace element in the blue-green alga,Nostoc muscorum: Influence on nitrogenase and nitrate reductase. New Phytol. 95: 55–60.

    Article  CAS  Google Scholar 

  • —. 1984a. Biological effects of a herbicide in a nitrogen-fixing cyanobacterium (blue-green alga): An attempt for introducing herbicide-resistance. New Phytol. 96: 7–11.

    Article  CAS  Google Scholar 

  • —. 1984b. Biological effects of the rice-field herbicide monuron on a nitrogen-fixing cyanobacteriumNostoc muscorum. Microbios Lett. 28: 105–111.

    Google Scholar 

  • —. 1984c. Studies on diuron uptake in a blue-green algaNostoc muscorum. J. Exp. Bot. 35: 897–904.

    Article  CAS  Google Scholar 

  • —. 1984d. Screening of amino acids for carbon and nitrogen enrichments in different strains of a cyanobacteriumNostoc muscorum. Biochem. Physiol. Pflanzen 179: 411–417.

    CAS  Google Scholar 

  • —. 1984e. Genetic manipulation and recombination leading to pesticide-resistance in a nitrogenfixing cyanobacterium. Pp. 3: 353–358in Third European Congress on Biotechnology, München, Federal Republic of Germany, 10–14 September 1984. Weinheim, Deerfield Beach, FL.

    Google Scholar 

  • —. 1984f. Copper-iron interactions in a nitrogen-fixing cyano-bacteriumNostoc muscorum. J. Pl. Nutr. 7: 567–573.

    Article  CAS  Google Scholar 

  • —. 1984g. Strong mutagenicity of a bipyridylium herbicide in a nitrogen-fixing blue-green alga. Experientia 40: 1016–1019.

    Article  Google Scholar 

  • —. 1984h. Powerful mutagenicity of a bipyridylium herbicide in a nitrogen-fixing blue-green algaNostoc muscorum. Mutat. Res. 138: 39–46.

    Article  PubMed  CAS  Google Scholar 

  • —. 1984i. Mutagenicity of a bipyridylium herbicide in a N2-fixing cyanobacteriumNostoc muscorum. Environ. Int. 10: 18–27.

    Article  Google Scholar 

  • —. 1985a. Growth ofNostoc muscorum mutants with diuron (DCMU) and L-methionine-DLsulfoximine. Experientia 41:137–139.

    Article  CAS  Google Scholar 

  • —. 1985b. Potent mutagenicity of a bipyridylium herbicide in a nitrogen-fixing blue-green alga,Nostoc muscorum. Biochem. Physiol. Pflanzen 180: 327–331.

    CAS  Google Scholar 

  • —. 1985c. Mutagenicity of bipyridylium salts in a nitrogen-fixing cyanobacterium. Microbios 43: 53–65.

    CAS  Google Scholar 

  • —. 1985d. Mutagenic activity of alachlor, butachlor and carbaryl to a nitrogen-fixing cyanobacteriumNostoc muscorum. J. Agric. Sci. (Cambridge) 104: 571–576.

    CAS  Google Scholar 

  • —. 1994a. Molecular genetics of nitrogen fixation in cyanobacteria. Pp. 1–18in A. B. Prasad & A. Vaishampayan (eds.), Biology and application of nitrogen-fixing organisms: Problems and prospects. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • —. 1994b. Recent advances in the molecular biology ofAzolla-Anabaena symbiotic nitrogenfixing complex and its use in agriculture. Pp. 121–143in A. B. Prasad & R. S. Bilgrami (eds.), Microbes and environment. Narendra Publishing House, New Delhi.

    Google Scholar 

  • —. 1995. Siderophore-mediated iron uptake in nitrogen-fixing cyanobacteria. Pp. 233–254in A. Hemantaranjan (ed.), Advancements in iron nutrition research. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • —. 1996. Mineral requirements of the free-living and cymbiotic cyanobacteria. Pp. 103–126in A. Hemantaranjan (ed.), Advancements in micronutrient research. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • -. 1997. Induction and improvement of physiological and genetic factors for supportingAzollaAnabaena symbiotic nitrogen-fixing complex to tide over the summer thermal regimes of Varanasi. Consolidated report of work accomplished under the U.G.C. career award research project of the government of India.

  • —. 1998. Physiological responses of genetically improved nitrogen-fixing cyanobacteria to agrochemicalization in relation to paddy culture: Prospects as a source material for engineering herbicide sensitivity and resistance in plants. Pp. 191–220in A. Hemantaranjan (ed.), Advances in plant physiology. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • — &A. K. Awasthi. 1996. Micropropagation ofAzolla-Anabaena symbiotic nitrogen-fixing mutant somaclones for an economic rice culture. Paper presented at the First International Symposium on Microbial Exploitation, Centre for Advanced Studies in Botany, Banaras Hindu Univ., Varanasi, India, March 13–16.

    Google Scholar 

  • — &K. K. Banerjee. 1995. Genetic approaches to accomplish reduced phosphate-dependence ofAzolla-Anabaena symbiotic nitrogen-fixing complex in wet agriculture. Pp. 161–193in A. N. Kargupta & E. N. Siddiqui (eds.), Algal ecology: An overview. International Book Publishers and Distributors, Dehra Dun, India.

    Google Scholar 

  • — &A. Hemantaranjan. 1984. Physiological significance of vanadium uptake during N2 and NO -3 metabolism in various strains of a N2-fixing cyanobacteriumNostoc muscorum. Pl. Cell Physiol. 25: 845–850.

    CAS  Google Scholar 

  • — &A. B. Prasad. 1981. A pesticide-resistant mutant of the N2-fixing blue-green algaNostoc muscorum. Experientia 37: 1285–1286.

    Article  CAS  Google Scholar 

  • ——. 1982. Blitox-resistant mutants of the N2-fixing blue-green algaeNostoc linckia andNostoc muscorum. Env. Exp. Bot. 22: 427–435.

    Article  CAS  Google Scholar 

  • ——. 1984a. Inter-strain transfer of a pesticide-resistance marker during N2 and NO -3 metabolism in various strains of a N2-fixing cyanobacteriumNostoc muscorum. Molec. Gen. Genet. 193: 195–197.

    Article  CAS  Google Scholar 

  • -& -. 1984b. Pesticides in relation to the nitrogen-fixing apparatus in cyanobacteria. Pp. 193–202in Proc. Nat. Symp. on Recent Trends in Botanical Research: Professor R. P. Roy’s commemoration volume, Patna, India, March 14–16,1982.

  • — &H. N. Singh. 1981a. Mutation in the blue-green algaNostoc muscorum, I: Methylamineresistant mutants. Biochem. Physiol. Pflanzen 176: 625–630.

    CAS  Google Scholar 

  • ——. 1981b. Mutation in the blue-green algaNostoc muscorum, II: L-methionine-DLsulfoximine-resistant mutants. Biochem. Physiol. Pflanzen 176: 631–637.

    CAS  Google Scholar 

  • —,H. R. Singh &H. N. Singh. 1978. Biological effects of rice-field herbicidestamf-34 on various strains oftheN2-fixing blue-green algaNostoc muscorum. Biochem. Physiol. Pflanzen 173:410–419.

    CAS  Google Scholar 

  • —,A. K. Mishra &V. P. Singh. 1992a. Uptake of monuron in a cyanobacterial mutant. Biomédical Lett. 47: 39–46.

    CAS  Google Scholar 

  • —,Y. R. Reddy, B. D. Singh &R. M. Singh. 1992b. Reduced phosphorus requirement of a mutantAzolla-Anabaena symbiotic N2-fixing complex. J. Exp. Bot. 43: 851–856.

    Article  CAS  Google Scholar 

  • —,T. Dey &A. K. Awasthi. 1996. Genetic improvement of nitrogen-fixing cyanobacteria in response to modern rice agriculture. Pp. 395–421in B. R. Chaudhary & S. B. Agrawal (eds.), Cytology, genetics and molecular biology of algae. SPB Academic, New York.

    Google Scholar 

  • —,A. K. Awasthi &T. Dey. 1998a. An ecological overview ofNostoc: The experimentally suitable genus of nitrogen-fixing blue-green algae. Pp. 72–99in B. N. Verma, A. N. Kargupta & S. K. Goyal (eds.), Advances in phycology: An appraisal. APC Publs., New Delhi.

    Google Scholar 

  • —,T. Dey &A. K. Awasthi. 1998b. Advances in molecular biology, agronomics and somaclonal mutagenesis ofAzolla-Anabaena symbiotic N2-fixing complex. Pp. 81–114in A. Varma (ed.), Microbes: For health, wealth & sustainable environment. Malhotra, New Delhi.

    Google Scholar 

  • ——,R. P. Sinha &D.-P. Häder. 1998c. Successful rice cultivation with genetically manipulated thermotolerantAzolla as a bio-N fertilizer. Acta Hydrobiol. 40: 207–213.

    Google Scholar 

  • —,R. P. Sinha &D.-P. Häder. 1998d. Use of genetically improved nitrogen-fixing cyanobacteria in rice paddy-fields: Prospects as a source material for engineering herbicide sensitivity and resistance in plants. Bot. Acta 111: 176–190.

    CAS  Google Scholar 

  • -,R. P. Singh, T. Dey & B. K. Prasad. 2000a. Use of impr

  • Wilson, J. T.,D. L. Eskew & oved phototrophic and heterotrophic N2 fixers in rice, wheat and barley cultivation. Pp. 2: 662–664in G. B. Singh (ed.), Proc. Int. Conf. on Managing Natural Resources. Indian Agric. Res. Inst., Indian Council of Agric. Res., New Delhi.

  • —,R. P. Sinha, A. K. Gupta &D.-P. Häder. 2000b. A cyanobacterial mutant resistant against a bleaching herbicide. J. Basic Microbiol. 4: 1–10.

    Google Scholar 

  • ————. 2000c. A cyanobacterial recombination study, involving an efficient N2-fixing non-heterocystous partner. Microbiol. Res. 155: 1–5.

    Google Scholar 

  • Van Hove, C. 1989.Azolla and its multiple uses with emphasis on Africa. Food and Agric. Org., Rome.

    Google Scholar 

  • Van Liere, L. &A. E. Walsby. 1982. Interactions of cyanobacteria with light. Pp. 9–45in N. G. Carr & B. A. Whitton (eds.), The biology of cyanobacteria. Botanical Monographs, 19. Blackwell Scientific, Oxford.

    Google Scholar 

  • Varghese, A. 1990. Effect of organic manure or natural occurrence ofAzolla pinnata and its effect on rice yield. Int. Rice Res. Newslett. 15: 16.

    Google Scholar 

  • Vasil, I. K., V. Vasil &D. H. Hubbell. 1977. Engineered plant cell or fungal association with bacteria that fix nitrogen. Pp. 197–221in A. Hollaender, R. H. Burris, P. R. Day, R. W. F. Hardy, D. R. Helinsky, M. R. Lomborg, L. Owens & R. C. Valentine (eds.), Genetic engineering for nitrogen fixation. Basic Life Sciences. Plenum Press, New York.

    Google Scholar 

  • Venkataraman, G. S. 1962. Studies on nitrogen fixation by blue-green algae, III: Nitrogen fixation byAnabaena azollae. Indian J. Agric. Sci. 32: 22–24.

    CAS  Google Scholar 

  • —. 1964. Thermal resistance and viability of microalgae. Pp. 2: 126–130in Biological nitrogen fixation and its possible course of evolution. Indian Council of Agric. Res., New Delhi.

    Google Scholar 

  • —. 1972. Algal biofertilizers and rice cultivation. Today & Tomorrow’s Publishers, Faridabad, India.

    Google Scholar 

  • —. 1975. The role of blue-green algae in tropical rice cultivation. Pp. 207–218in W. D. P. Stewart (ed.), Nitrogen fixation by free-living micro-organisms. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • —. 1979. Algal inoculation of rice fields. Pp. 311–321in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • —. 1981. Blue-green algae: A possible remedy to nitrogen scarcity. Curr. Sci. 50: 253–256.

    Google Scholar 

  • -. 1988. Vast scope of biofertilizers. The Hindu Survey of Indian Agriculture: 161–163.

  • —. 1993. Blue-green algae (cyanobacteria). Pp. 45–76in S. N. Tata, A. M. Wadhwani & M. S. Mehdi (eds.), Biological nitrogen fixation. Indian Council of Agric. Res., New Delhi.

    Google Scholar 

  • — &S. K. Goyal. 1968. Influence of blue-green algal inoculation on the crop yield of rice plants. Soil Sci. Pl. Nutr. 14: 249–251.

    Google Scholar 

  • Venkataraman, L. V. 1986. Blue-green algae as biofertilizers. Pp. 455–471in A. Richmond (ed.), CRC Handbook of microalgal mass culture. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Verma, S. K., A. K. Singh, S. Katiyar &H. N. Singh. 1990. Genetic transformation of glutamine auxotrophy to prototrophy in the cyanobacteriumNostoc muscorum. Arch. Microbiol. 154: 414–416.

    Article  PubMed  CAS  Google Scholar 

  • Vitousek, P. K., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger &D. G. Timan. 1997. Human alteration of the global nitrogen cycle sources and consequences. Ecol. Appl. 7: 737–750.

    Google Scholar 

  • Vlek, P. L. G., M. Y. Diakite &H. Mueller. 1995. The role ofAzolla in curbing ammonia volatilization from flooded rice systems. Fertilizer Res. 42: 165–174.

    Article  CAS  Google Scholar 

  • Vonshak, A. &A. Richmond. 1988. Mass production of the blue-green algaSpirulina. Biomass 15: 233–247.

    Article  Google Scholar 

  • Wagner, G. M. 1997.Azolla: A review of its biology and utilization. Bot. Rev. (Lancaster) 63: 1–26.

    Article  Google Scholar 

  • Watanabe, A. 1956. On the effect of the atmospheric nitrogen-fixing blue-green algae on the yield of rice. Bot. Mag. (Tokyo) 69: 530–535 (in Japanese).

    Google Scholar 

  • —. 1962. Effect of a nitrogen-fixing blue-green algaTolypothrix tenuis on the nitrogen fertilizer of paddy soils and on the crop yield of rice plant. J. Gen. Appl. Microbiol. 8: 85–91.

    Article  Google Scholar 

  • —. 1965. Studies on blue-green algae as green manure in Japan. Proc. Natl. Acad. Sci., India 35: 361–369.

    Google Scholar 

  • Watanabe, I. 1982.Azolla-Anabaena symbiosis, its physiology and use in tropical agriculture. Pp. 169–185 in Y. Dommergues & H. G. Dien (eds.), Microbiology of tropical soils and plant productivity. M. Nijhoff, The Hague.

    Google Scholar 

  • —. 1984. Use of symbiotic and free-living blue-green algae in rice culture. Outlook Agri. (Manila) 13: 166–172.

    Google Scholar 

  • -. 1985. Limiting factors in increasing N2 fixation in rice fields. Pp. 436–464in Biological nitrogen fixation in Africa: Proceedings of the 1st Conf., African Assoc. for Biological Nitrogen Fixation.

  • — &N. S. Berja. 1983. Growth of four species ofAzolla as affected by temperature. Aquatic Bot. 15: 175–185.

    Article  CAS  Google Scholar 

  • — &C. C. Liu. 1992. Improving nitrogen-fixing systems and integrating them into successful rice farming. Pl. & Soil 141: 57–67.

    Article  CAS  Google Scholar 

  • — &C. M. Ramirez. 1984. Relationship between soil phosphorus availability andAzolla growth. Soil Sci. Pl. Nutr. 30: 595–598.

    CAS  Google Scholar 

  • —,K. K. Lee, B. V. Alimagno, M. Sato, D. C. del Rosario &M. R. de Gozman. 1977. Biological N2 fixation in paddy field studies byin situ acetylene reduction assays. IRRI Research Paper Series, 3: 1–16.

    CAS  Google Scholar 

  • —,K. Z. Bai, N. S. Berja, C. R. Espinas, O. Ito &B. P. R. Subudhi. 1981.Azolla-Anabaena complex as a nitrogen fertilizer for lowland rice. IRRI Research Paper Series, 11:180–198.

    Google Scholar 

  • —,C. Lin, C. Ramirez &C. C. Liu. 1989a. Physiology and agronomy ofAzolla-Anabaena symbiosis. Pp. 57–62in F. A. Skinner, R. M. Boddey & I. Fendrik (eds.), Nitrogen fixation with nonlegumes: The Fourth International Symposium on “Nitrogen Fixation with Non-legumes,” Rio de Janeiro, 23–28 August 1987. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • —,G. Ventura, G. Mascarina &D. L. Eskew. 1989b. Fate ofAzolla sp. and urea nitrogen applied to wetland rice (Oryza saliva). Biol. Fertility Soils 8: 102–110.

    Article  Google Scholar 

  • Whitton, B. A. 2000. Soils and rice-fields. Pp. 233–255in B. A. Whitton & M. Potts (eds.), The ecology of cyanobacteria: Their diversity in time and space. Kluwer Academic, Netherlands.

    Google Scholar 

  • —,A. Aziz, B. Kawecka &J. A. Rother. 1989. Ecology of deepwater rice-fields in Bangladesh, 3: Associated algae and macrophytes. Hydrobiologia 169: 31–42.

    Article  Google Scholar 

  • —,S. L. J. Grainger &J. W. Simon. 1991. Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microbial Ecol. 21: 85–98. M. Habte. 1980. Recovery of nitrogen by rice from blue-green algae added in flooded soil. Soil Sci. Soc. Amer. J. 44: 1330–1331.

    Article  CAS  Google Scholar 

  • Wölk, C. P. 1973. Physiology and cytological chemistry of blue-green algae. Bacteriol. Rev. 37: 32–101.

    PubMed  Google Scholar 

  • — &P. W. Shaffer. 1976. Heterotrophic micro and macro-cultures of a nitrogen-fixing cyanobacterium. Arch. Microbiol. 110: 145–149.

    Article  PubMed  Google Scholar 

  • — &E. Wojciuch. 1971. Photoreduction of acetylene by heterocysts. Planta 97: 126–134.

    Article  Google Scholar 

  • Wright, S. J. L., A. F. Stainthorpe &J. W. Downs. 1977. Interactions of the herbicides propanil and a metabolite, 3,4-dichloroaniline, with blue-green algae. Acta Pathol. (Acad. Sci. Hungary) 2:51–60. Acta Phytopathol. Acad. Sci. Hung.

    Google Scholar 

  • Wyatt, J. J. &J. K. G. Silvey. 1969. Nitrogen fixation byGloeocapsa. Science 165: 908–909.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, M. 1979. Biological nitrogen fixation in flooded rice fields. Pp. 193–206in Nitrogen and rice. Int. Rice Res. Inst., Los Baños, Philippines.

    Google Scholar 

  • Yamaoka, T., K. Satoh &S. Katoh. 1978. Photosynthetic activities in a thermophillic blue-green alga. Pl. Cell Physiol. 19:934–954.

    Google Scholar 

  • Yanni, Y. G. 1992a. The effect of cyanobacteria andAzolla on the performance of rice under different levels of fertilizer nitrogen. World J. Microbiol. & Biotechnol. 8:132–136.

    Article  Google Scholar 

  • —. 1992b. Contribution of inoculation withAzolla combined with nitrogen, phosphorus and zinc to rice in Nile Delta. World J. Microbiol. & Biotechnol. 8: 579–584.

    Article  CAS  Google Scholar 

  • Yatazawa, M., N. Tomomatsu, N. Hasoda &K. Nunome. 1980. Nitrogen fixation inAzolla-Anabaena symbiosis as affected by mineral nutrient status. Soil Sci. Pl. Nutr. 26: 415–416.

    CAS  Google Scholar 

  • Yeomann, M. M. &A. J. Macleod. 1977. Tissue (callus) culture techniques. Pp. 31–57in H. E. Street (ed.), Plant tissue and cell culture. Botanical monographs, 11. Blackwell Scientific, Oxford.

    Google Scholar 

  • Zhang, W. W., Y. H. Lin, P. J. Lu, Z. Z. Liu &J. H. Huang. 1990. Electron microscopic observation of symbiotic relationship betweenAzolla andAnabaena during megaspore germination and sporeling development ofAzolla. Acta Bot. Sinica 37: 514–520.

    Google Scholar 

  • Zhu, Z. L., D. L. Chen, S. L. Zhang &Y. H. Xu. 1986. Heterotrophic nitrogen fixation in rice field soil. Soils (Beijing) 18: 225–229.

    Google Scholar 

  • Zimmermann, W. J. 1985a. Biomass and pigment production in three isolates ofAzolla, I: Response to water stress. Ann. Bot. 56: 689–700.

    Google Scholar 

  • —. 1985b. Biomass and pigment production in three isolates ofAzolla, II. Response to light and temperature stress. Ann. Bot. 56: 701–710.

    Google Scholar 

  • —,B. Meeting &W. Rauburn. 1980. The occurrence of blue-green algae in silt loams of Whitman County, Washington. Soil Sci. 130: 11–18.

    Article  Google Scholar 

  • —,I. Watanabe &T. A. Lumpkin. 1991. TheAnabaena-Azolla symbiosis diversity and relatedness of Neotropical host taxa. Pl. & Soil 137: 167–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaishampayan, A., Sinha, R.P., Hader, D.P. et al. Cyanobacterial biofertilizers in rice agriculture. Bot. Rev 67, 453–516 (2001). https://doi.org/10.1007/BF02857893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857893

Keywords

Navigation