Skip to main content
Log in

Plant phenolics in allelopathy

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Phenolics are one of the many secondary metabolites implicated in allelopathy. To establish that allelopathy functions in a natural ecosystem, the allelopathic bioassay must be ecologically realistic so that responses of appropriate bioassay species are determined at relevant concentrations. It is important to isolate, identify, and characterize phenolic compounds from the soil. However, since it is essentially impossible to simulate exact field conditions, experiments must be designed with conditions resembling those found in natural systems. It is argued that allelopathic potential of phenolics can be appreciated only when we have a good understanding of 1) species responses to phenolic allelochemicals, 2) methods for extraction and isolation of phenolic allelochemicals, and 3) how abiotic and biotic factors affect phenolic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Aliotta, G., G. Cafiero, V. D. Feo &R. Sacchi. 1994. Potential allelochemicals fromRuta graveolens L. and their action on radish seeds. J. Chem. Ecol.20: 2761–2775.

    Article  CAS  Google Scholar 

  • Alsaadawi, I. S. &A. J. Al-Rubeaa. 1985. Allelopathic effects ofCitrus aurantium L. I. Vegetational patterning. J. Chem. Ecol.11: 1515–1525.

    Article  CAS  Google Scholar 

  • Appel, H. M. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol.19: 1521–1552.

    Article  CAS  Google Scholar 

  • Ben-Hammouda, M., R. J. Kremer, H. C. Minor &M. Sarvar. 1995. A chemical basis for differential allelopathic potential ofSorghum hybrids on wheat. J. Chem. Ecol.21: 775–786.

    Article  CAS  Google Scholar 

  • Blum, U. 1995. The value of model plant-microbe-soil systems for understanding processes associated with allelopathic interaction: One example. Pages 127–131in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • — &J. Rebbeck. 1989. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J. Chem. Ecol.15: 917–928.

    Article  CAS  Google Scholar 

  • — &S. R. Shafer. 1988. Microbial populations and phenolic acids in soil. Soil Biol. Biochem.20: 793–800.

    Article  CAS  Google Scholar 

  • —,S. B. Weed &B. R. Dalton. 1987. Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Pl. & Soil98: 111–130.

    Article  CAS  Google Scholar 

  • —,T. R. Wentworth, K. Klein, A. D. Worsham, L. D. King, T. M. Gerig &S. W. Lyu. 1991. Phenolic acid content in soil from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J. Chem. Ecol.17: 1045–1067.

    Article  CAS  Google Scholar 

  • —,T. M. Gerig, A. D. Worsham &L. D. King. 1993. Modification of allelopathic effects of p-coumaric acid on morning glory seedling biomass by glucose, methionine, and nitrate. J. Chem. Ecol.19: 2791–2811.

    Article  CAS  Google Scholar 

  • —,A. D. Worsham, L. D. King &T. M. Gerig. 1994. Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in Cecil soils. J. Chem. Ecol.20: 341–359.

    Article  CAS  Google Scholar 

  • Box, J. D. 1983. Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res.17: 511–525.

    Article  CAS  Google Scholar 

  • Chapin, F. S. III. 1995. New cog in the nitrogen cycle. Nature377: 199–200.

    Article  CAS  Google Scholar 

  • Chapman, S. J. &J. M. Lynch. 1983. The relative roles of micro-organisms and their metabolites in the phytotoxicity of decomposing plant residues. Pl. & Soil74: 457–459.

    Article  Google Scholar 

  • Cheng, H. H. 1995. Characterization of the mechanisms of allelopathy: Modeling and experimental approaches. Pages 132–141in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • Chou, C. H. &Z. A. Patrick. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol.2: 369–387.

    Article  CAS  Google Scholar 

  • — &G. R. Waller. 1983. Allelochemicals and pheromones. Institute of Botany, Academia Sinica Monograph Series 5, Taipei.

    Google Scholar 

  • Dalton, B. R. 1989. Physiochemical and biological processes affecting the recovery of exogenously applied ferulic acid from tropical forest soils. Pl. & Soil115: 13–22.

    Article  CAS  Google Scholar 

  • —,U. Blum &S. B. Weed. 1983. Allelopathic substances in ecosystems: Effectiveness of sterile soil components in altering recovery of ferulic acid. J. Chem. Ecol.9: 1185–1201.

    Article  CAS  Google Scholar 

  • —,S. B. Weed &U. Blum. 1987. Plant phenolic acids in soils: A comparison of extraction procedures. Soil Sci. Soc. Amer. J.51: 1515–1521.

    Article  CAS  Google Scholar 

  • —,——. 1989a. Plant phenolic acids in soils: Sorption of ferulic acid by soil and soil components sterilized by different techniques. Soil Biol. Biochem.21: 1011–1018.

    Article  CAS  Google Scholar 

  • —,——. 1989b. Differential sorption of exogenously applied ferulic, p-coumaric, p-hydroxybenzoic, and vanillic acids in soil. Soil Sci. Soc. Amer. J.53: 757–762.

    Article  CAS  Google Scholar 

  • Dao, T. H. 1987. Sorption and mineralization of plant phenolic acids in soil. Pages 358–370in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.

    Google Scholar 

  • Del Moral, R. &R. G. Cates. 1971. Allelopathic potential of the dominant vegetation of western Washington. Ecology52: 1030–1037.

    Article  Google Scholar 

  • — &C. H. Muller. 1970. Allelopathic effects ofEucalyptus camaldulensis. Amer. Midl. Naturalist83: 254–282.

    Article  Google Scholar 

  • De Scisciolo, B., D. J. Leopold &D. C. Walton. 1990. Seasonal patterns of juglone in soil beneathJuglans nigra (black walnut) and influence ofJ. nigra on understory vegetation. J. Chem. Ecol.16: 1111–1130.

    Article  Google Scholar 

  • Dornbos, D. L., Jr. &G. F. Spencer. 1990. Natural product phytotoxicity: A bioassay suitable for small quantities of slightly water-soluble compounds. J. Chem. Ecol.16: 339–352.

    Article  CAS  Google Scholar 

  • Einhellig, F. A. 1995a. Allelopathy: Current status and future goals. Pages 1–24in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • —. 1995b. Mechanism of action of allelochemicals in allelopathy. Pages 96–116in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • — &I. F. Souza. 1992. Sorgoleone found in grain sorghum root exudates. J. Chem. Ecol.18: 1–12.

    Article  CAS  Google Scholar 

  • —,M. K. Schon &J. A. Rasmussen. 1982. Synergistic effects of four cinnamic acid compounds on grain sorghum. J. Pl. Growth Regulat.1: 251–258.

    Google Scholar 

  • —,G. R. Leather &L. L. Hobbs. 1985. Use ofLemna minor L. as a bioassay in allelopathy. J. Chem. Ecol.11: 65–72.

    Article  CAS  Google Scholar 

  • Evans, L. J. 1980. Podzol development north of lake Huron in relation to geology and vegetation. Canad. J. Soil Sci.60: 527–539.

    Article  CAS  Google Scholar 

  • Fischer, N. H., G. B. Williamson, J. D. Weidenhamer &D. R. Richardson. 1994. In search of allelopathy in Florida scrub: The role of allelopathy. J. Chem. Ecol.20: 1355–1380.

    Article  CAS  Google Scholar 

  • Fisher R. F. 1987. Allelopathy: A potential cause of forest regeneration failure. Pages 176–184in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.

    Google Scholar 

  • Folin, O. &Ciocalteu V. 1927. On tryosine and tryptophane determination in proteins. J. Biol. Chem.73: 627–650.

    CAS  Google Scholar 

  • — &W. Denis. 1912. On phosphotungstic phosphomolybdic compounds as color reagents. J. Biol. Chem.12: 239–243.

    CAS  Google Scholar 

  • Gallet, C. &P. Lebreton. 1995. Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Soil Biol. Biochem.27: 157–165.

    Article  CAS  Google Scholar 

  • Grodzinsky, A. M. 1987. Allelopathy in the Soviet Union. Pages 39–43in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.

    Google Scholar 

  • Hagerman, A. E. &L. G. Butler. 1991. Choosing appropriate methods and standards for assessing tannin. J. Chem. Ecol.15: 1795–1810.

    Article  Google Scholar 

  • Haider, K. &J. P. Martin. 1975. Decomposition of specifically carbon-14 labelled benzoic and cinnamic acid derivatives in soil. Soil Sci. Soc. Amer. Proc.39: 657–662.

    Article  CAS  Google Scholar 

  • Hall, A. B., U. Blum &R. C. Fites. 1982. Stress modification of allelopathy ofHelianthus annuus L. debris on seed germination. Amer. J. Bot.69: 776–783.

    Article  Google Scholar 

  • Harborne, J. B., ed. 1989a. Methods in plant biochemistry. I. Plant phenolics. Academic Press, London.

    Google Scholar 

  • —. 1989b. General procedures and measurements of total phenolics. Pages 1–28in J. B. Harborne (ed.), Methods in plant biochemistry. I. Plant phenolics. Academic Press, London.

    Google Scholar 

  • Hartley, R. D. &H. Buchan. 1979. High-performance liquid chromatography of phenolic acids and aldehydes derived from plants or from the decomposition of organic matter in soil. J. Chromatogr.180: 139–143.

    Article  CAS  Google Scholar 

  • Hattori, S. &I. Noguchi. 1959. Microbial degradation of rutin. Nature184: 1145–1146.

    Article  PubMed  CAS  Google Scholar 

  • Heisey, R. M. 1990. Evidence of allelopathy by tree-of-heaven (Ailanthus altissima). J. Chem. Ecol.16: 2039–2055.

    Article  CAS  Google Scholar 

  • Huang, P. M., T. S. C. Wang, M. K. Wang, M. H. Wu &N. W. Hsu. 1977. Retention of phenolic acids by noncrystalline hydroxy-aluminum and-iron compounds and clay minerals of soil. Soil Sci.123: 213–219.

    Article  CAS  Google Scholar 

  • Inderjit &K. M. M. Dakshini. 1991a. Investigation on some aspects of chemical ecology of cogon grass,Imperata cylindrica (L.) Beauv. J. Chem. Ecol.17: 343–352.

    Article  CAS  Google Scholar 

  • ——. 1991b. Hesperetin 7-rutinoside (hesperidin) andtaxifolin 3-arabinoside as germination and growth inhibitors in soils associated with the weedPluchea lanceolata (DC.) C. B. Clarke (Asteraceae). J. Chem. Ecol.17: 1585–1591.

    Article  CAS  Google Scholar 

  • ——. 1992a. Formononetin 7-O-glucoside (ononin), an additional inhibitor in soils associated with the weedPluchea lanceolata (DC.) C. B. Clarke (Asteraceae). J. Chem. Ecol.18: 713–718.

    Article  CAS  Google Scholar 

  • ——. 1992b. Interference potential ofPluchea lanceolata (Asteraceae): Growth and physiological responses of asparagus bean,Vigna unguiculata var.sesquipedalis. Amer. J. Bot.79: 977–981.

    Article  Google Scholar 

  • ——. 1994a. Allelopathic effect ofPluchea lanceolata (Asteraceae) on characteristics of four soils and tomato and mustard growth. Amer. J. Bot.81: 799–804.

    Article  Google Scholar 

  • ——. 1994b. Allelopathic potential of the phenolics from the roots ofPluchea lanceolata. Physiol. Pl.92: 571–576.

    Article  CAS  Google Scholar 

  • ——. 1994c. Effect of cultivation on allelopathic interference success of the weedPluchea lanceolata. J. Chem. Ecol.20: 1179–1188.

    Article  CAS  Google Scholar 

  • ——. 1994d. Algal allelopathy. Bot. Rev.60: 182–196.

    Google Scholar 

  • ——. 1995a. On laboratory bioassays in allelopathy. Bot. Rev.61: 28–44.

    Article  Google Scholar 

  • ——. 1995b. Quercetin and quercitrin fromPluchea lanceolata and their effect on growth of asparagus bean. Pages 86–93in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • ——. 1995c. Allelopathic potential of an annual weed,Polypogon monspeliensis, in crops in India. Pl. & Soil173: 251–257.

    Article  CAS  Google Scholar 

  • -& -. 1996. Allelopathic potential ofPluchea lanceolata: A comparative study of cultivated fields. Weed Sci. In press.

  • — &F. A. Einhellig. 1995. Allelopathy: Organisms, Processes and Applications. ACS Symposium Series 582. American Chemical Society, Washington, DC.

    Google Scholar 

  • Inoue, M., H. Nishimura, H. H. Li &J. Mizutani. 1992. Allelochemicals fromPolygonum sachalinense Fr. Schm. (Polygonaceae) J. Chem. Ecol.18: 1833–1840.

    Article  CAS  Google Scholar 

  • Jalal, M. A. F. &D. J. Read. 1983. The organic acid decomposition ofCalluna heathland soil with special reference to phyto-and fungitoxicity. II. Monthly quantitative determination of the organic acid content ofCalluna and spruce-dominated soil. Pl. & Soil70: 273–286.

    Article  CAS  Google Scholar 

  • —,— &E. Haslam. 1982. Phenolic composition and its seasonal variation inCalluna vulgaris. Phytochemistry21: 1397–1401.

    Article  CAS  Google Scholar 

  • Kafkafi, U., B. Bar-Yosef, R. Rosenberg &G. Sposito. 1988. Phosphorus adsorption by kaolinite and montmorillonite: II. Organic anion competition. Soil Sci. Soc. Amer. J.52: 1585–1589.

    Article  CAS  Google Scholar 

  • Kaminsky, R. 1981. The microbial origin of the allelopathic potential ofAdenostoma fasciculatum H. & A. Ecol. Monogr.51: 365–382.

    Article  CAS  Google Scholar 

  • — &W. H. Mullen 1977. The extraction of soil phytotoxins using a neutral EDTA solution. Soil Sci.124: 205–210.

    Article  CAS  Google Scholar 

  • ——. 1978. A recommendation against the use of alkaline extraction in study of allelopathy. Pl. & Soil49: 641–645.

    Article  CAS  Google Scholar 

  • Kimber, R. W. L. 1973. Phytotoxicity from plant residues. II. The effect of time of rotting of straw from some grasses and legumes on growth of wheat seedlings. Pl. & Soil38: 347–361.

    Article  Google Scholar 

  • Klein, K. &U. Blum. 1990. Effects of soil nitrogen level on ferulic acid inhibition of cucumber leaf expansion. J. Chem. Ecol.16: 1371–1383.

    Article  CAS  Google Scholar 

  • Koeppe, D. E., L. M. Southwick &J. E. Bittell. 1976. The relationship of tissue chlorogenic acid concentration and leaching of phenolics from sunflowers grown under varying phosphate nutrient conditions. Canad. J. Bot.54: 593–599.

    Article  CAS  Google Scholar 

  • Kogel, I. &W. Zech. 1985. The phenolic acid content of cashew leaves (Anacardium occidentale L.) and of the associated humus layer, Senegal. Geoderma35: 119–125.

    Article  Google Scholar 

  • Kuiters, A. T. 1990. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot. Neerl.39: 329–348.

    CAS  Google Scholar 

  • — &C. A. J. Denneman. 1987. Water-soluble phenolic substances in soils under several coniferous and deciduous tree species. Soil Biol. Biochem.19: 765–769.

    Article  CAS  Google Scholar 

  • Lawrey, J. D. 1995. Lichen allelopathy: A review. Pages 26–38in Inderjit, K. M. M. Dakshini & F. A. Einhellig (eds.), Allelopathy: Organisms, processes, and applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • Leather, G. R. &F. A. Einhellig. 1986. Bioassays in the study of allelopathy. Pages 133–145in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • Lehman, R. H. &E. L. Rice. 1972. Effects of deficiency of nitrogen, potassium, and sulfur on chlorogenic acid and scopoletin in sunflower. Amer. Midl. Naturalist87: 71–80.

    Article  CAS  Google Scholar 

  • Levin, D. A. 1971. Plant phenolics: An ecological perspective. Amer. Naturalist105: 157–181.

    Article  CAS  Google Scholar 

  • Li, H. H., M. Inoue, H. Nishimura, J. Mizutani &E. Tsuzuki. 1993. Interactions of trans-cinnamic acid, its released phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecol.19: 1775–1787.

    Article  CAS  Google Scholar 

  • Liebl, R. H. &A. D. Worsham. 1983. Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol.9: 1027–1043.

    Article  CAS  Google Scholar 

  • Lodhi, M. A. K. 1975. Soil plant phytotoxicity and its possible significance in patterning of herbaceous vegetation in a bottomland forest. Amer. J. Bot.62: 618–622.

    Article  CAS  Google Scholar 

  • —. 1976. Role of allelopathy as expressed by dominating trees in a lowland forest in controlling the productivity and pattern of herbaceous growth. Amer. J. Bot.63: 1–8.

    Article  CAS  Google Scholar 

  • —. 1978. Allelopathic effects of decaying litter of dominant trees and their associated soil in a lowland forest community. Amer. J. Bot.65: 340–344.

    Article  CAS  Google Scholar 

  • Lyu, S. W. &U. Blum. 1990. Effect of ferulic acid, an allelopathic compound, on net P, K, and water uptake in cucumber seedling in a split-root system. J. Chem. Ecol.16: 2429–2439.

    Article  CAS  Google Scholar 

  • Mallik, M. A. B., R. Puchala &F. A. Grosz. 1994. A growth-inhibitory factor from lambsquarters (Chenopodium album). J. Chem. Ecol.20: 957–967.

    Article  CAS  Google Scholar 

  • McPherson, J. K. &C. H. Muller. 1969. Allelopathic effects ofAdenostoma fasciculatum chamise in the California chaparral. Ecol. Monogr.39: 173–198.

    Article  Google Scholar 

  • Mole, S. &P. G. Waterman. 1987. A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins. Oecologia72: 148–156.

    Article  Google Scholar 

  • Muller, C. H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club93: 332–351.

    Article  CAS  Google Scholar 

  • —. 1969. Allelopathy as a factor in ecological processes. Vegetatio18: 348–357.

    Article  Google Scholar 

  • Netzly, D. H., J. L. Riopel, G. Ejeta &L. G. Butler. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci.36: 441–446.

    CAS  Google Scholar 

  • Nicollier, G. F., D. F. Pope &A. C. Thompson. 1983. Biological activity of dhurrin and other compounds from Johnson grass (Sorghum halepense). Agric. Food Chem.31: 744–748.

    Article  CAS  Google Scholar 

  • Northup, R. R., Y. Zengshou, R. A. Dahlgren &K. A. Vogt. 1995. Polyphenol control of nitrogen release from pine litter. Nature377: 227–229.

    Article  CAS  Google Scholar 

  • Palm, C. A. &P. A. Sanchez. 1991. Nitrogen release from leaves of some tropical legumes as affected by their lignin and polyphenol contents. Soil Biol. Biochem.23: 83–88.

    Article  CAS  Google Scholar 

  • Perry, D. A. &C. Choquette. 1987. Allelopathic effects on mycorrhizae: Influence on structure and dynamics of forest ecosystems. Pages 185–194in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.

    Google Scholar 

  • Ponder, F., Jr. 1987. Allelopathic interference of black walnut trees with nitrogen-fixing plants in mixed plantings. Pages 195–204in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.

    Google Scholar 

  • — &S. H. Tadros. 1985. Juglone concentration in soil beneath black walnut interplanted with nitrogen-fixing species. J. Chem. Ecol.11: 937–942.

    Article  CAS  Google Scholar 

  • Pue, K. J., U. Blum, T. M. Gerig &S. R. Shafer. 1995. Mechanism by which noninhibitory concentration of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J. Chem. Ecol.21: 833–847.

    Article  CAS  Google Scholar 

  • Putnam, A.R. 1985. Weed allelopathy. Pages 132–155in S. O. Duke (ed.), Weed physiology. CRC Press, Boca Raton, FL.

    Google Scholar 

  • — &C. S. Tang. 1986. Allelopathy: State of the science. Pages 1–19in A. R. Putnam & C. S. Tang (eds.), The science of allelopathy. John Wiley, New York.

    Google Scholar 

  • Rettenmaier, H., U. Kupas &F. Lingens. 1983. Degradation of juglone byPseudomonas putida J1. FEMS Microbiol. Lett.19: 193–195.

    Article  CAS  Google Scholar 

  • Rice, E. L. 1979. Allelopathy—An update. Bot Rev.45: 15–109.

    CAS  Google Scholar 

  • —. 1984. Allelopathy. Academic Press, Orlando, FL.

    Google Scholar 

  • —. 1987. Allelopathy: An overview. Pages 8–22in G. R. Waller (ed.) Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.

    Google Scholar 

  • Schmidt, S. K. 1988. Degradation of juglone by soil bacteria. J. Chem. Ecol.14: 1561–1571.

    Article  CAS  Google Scholar 

  • —. 1990. Ecological implications of destruction of juglone (5-hydroxy-1, 4-naphthquinone) by soil bacteria. J. Chem. Ecol.16: 3547–3549.

    Article  Google Scholar 

  • Shafer, S. R. &U. Blum. 1991. Influence of phenolic acid on microbial population in the rhizosphere of cucumber. J. Chem. Ecol.17: 369–389.

    Article  CAS  Google Scholar 

  • Shilling, D. G. &F. Yoshikawa. 1987. A rapid seedling bioassay for study of allelopathy. Pages 334–342in G. R. Waller (ed.), Allelochemicals: Role in agriculture and forestry. American Chemical Society, Washington, DC.

    Google Scholar 

  • Shindo, H. &S. Kuwatsuka. 1975. Behavior of phenolic substances in decaying process of plants. III. Degradation pathway of phenolic acids. Soil Sci. Pl. Nutr.21: 227–238.

    CAS  Google Scholar 

  • Siqueira, J. O., N. G. Nair, R. Hammerchidt &G. R. Safir. 1991. Significance of phenolic compounds in plant-soil-microbial systems. Crit. Rev. Pl. Sci.10: 63–121.

    CAS  Google Scholar 

  • Sparling, G. P., B. G. Ord &D. Vaughan. 1981. Changes in microbial biomass and activity in soils amended with phenolic acids. Soil Biol. Biochem.13: 455–460.

    Article  CAS  Google Scholar 

  • Stowe, L. G. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field. J. Ecol.67: 1065–1085.

    Article  CAS  Google Scholar 

  • — &A. Osborn. 1980. The influence of nitrogen and phosphorus levels on the phytotoxicity of phenolic compounds. Canad. J. Bot58: 1149–1153.

    CAS  Google Scholar 

  • Swain, T. &W. E. Hillis. 1959. The phenolic constituents ofPrunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric.10: 63–68.

    Article  CAS  Google Scholar 

  • Tan, K. H. &A. Binger. 1986. Effect of humic acid on aluminum toxicity in corn plants. Soil Sci.141: 20–25.

    Article  CAS  Google Scholar 

  • Tang, C. S. &C. C. Young. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Pl. Physiol.69: 155–160.

    CAS  Google Scholar 

  • Tanrisever, N., F. R. Fronczek, N. H. Fischer &G. B. Willemson. 1987. Ceratiolin and other flavonoids fromCeratiola ericoides. Phytochemistry26: 175–179.

    Article  Google Scholar 

  • Torti, S. D., M. D. Dearing &T. A. Kursar. 1995. Extraction of phenolic compounds from fresh leaves: A comparison of methods. J. Chem. Ecol.21: 117–125.

    Article  CAS  Google Scholar 

  • Turner, J. A. &E. L. Rice. 1975. Microbial decomposition of ferulic acid in soil. J. Chem. Ecol.1: 41–58.

    Article  CAS  Google Scholar 

  • Van Alstyne, K. L. 1995. Comparison of three methods for quantifying brown algal polyphenolic compounds. J. Chem. Ecol.21: 45–58.

    Article  Google Scholar 

  • Vance, G. F., D. L. Mokma &S. A. Boyd. 1986. Phenolic compounds in soils of hydrosequences and developmental sequences of sodzols. Soil. Sci. Soc. Amer. J.50: 992–996.

    Article  CAS  Google Scholar 

  • Waller, G. R. 1987. Allelochemicals: Role in agriculture and forestry. ACS Symposium Series 330. American Chemical Society, Washington, DC.

    Google Scholar 

  • Wang, T. S. C., S. Y. Cheng &H. Tung. 1967. Extraction and analysis of soil organic acids. Soil Sci.103: 360–366.

    CAS  Google Scholar 

  • —,S. W. Li &Y. L. Ferng. 1978. Catalytic polymerization of phenolic compounds by clay minerals. Soil Sci.126: 15–21.

    Article  CAS  Google Scholar 

  • Waterman, P. G. &S. Mole. 1994. Methods in ecology: Analysis of phenolic plant metabolites. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Weidenhamer, J. D. &J. T. Romeo. 1989. Allelopathic properties ofPolygonella myriophylla: Field evidence and bioassays. J. Chem. Ecol.15: 1957–1970.

    Article  Google Scholar 

  • —,D. C. Hartnett &J. T. Romeo. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol.26: 613–624.

    Article  CAS  Google Scholar 

  • Weston, L. A., R. Harmon &S. Mueller. 1989. Allelopathic potential of sorghum-sudangrass hybrid (sudex). J. Chem. Ecol.15: 1855–1865.

    Article  Google Scholar 

  • Whitehead, D. C., H. Dibb &R. D. Hartley. 1981. Extractant pH and the release of phenolic compounds from soil, plant roots, and leaf litter. Soil Biol. Biochem.13: 343–348.

    Article  CAS  Google Scholar 

  • —,——. 1982. Phenolic compounds in soil as influenced by the growth of different plant species. J. Appl. Ecol.19: 579–588.

    Article  CAS  Google Scholar 

  • Whittaker, R. H. &P. P. Feeny. 1971. Allelochemicals: Chemical interactions between plant species. Science171: 757–770.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. D. &R. E. Hoagland. 1982. The effects of naturally occurring phenolic compounds on seed germination. Weed Sci.30: 206–212.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inderjit Plant phenolics in allelopathy. Bot. Rev 62, 186–202 (1996). https://doi.org/10.1007/BF02857921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857921

Keywords

Navigation