Skip to main content
Log in

Plant root exudates

  • Published:
The Botanical Review Aims and scope Submit manuscript

Conclusions

Although the quantities of organic compounds exuding from roots is not large, seldom exceeding 0.4% of the carbon photosynthesized, they do exert a very strong influence on the soil microorganisms and may be significant in affecting plant nutrient availability. There is evidence that exudates from the roots of some plants are toxic to roots of neighboring plants and to the germination of some seeds.

Most of our information on root exudates has been obtained from solution-grown plants so that there are still some important questions to be answered about root exudates from soil-grown plants: (a) How much organic material is exuded from roots into soil? (b) How far from roots do the compounds diffuse? (c) What concentration gradients exist? (d) What effects do soil properties have upon exudation? (e) What are the main sites of exudation? The application of C14-labeling techniques offers a powerful tool with which to answer these questions. Use of radioisotopes to investigate the sites of exudation along roots and the role of lateral roots in the exudation process should enable us to determine what part of the soil will be most affected by root exudates.

It has now been demonstrated conclusively that application of certain compounds to leaves affects the quantity and types of exudates. The use of foliar sprays to modify root exudation has important implications in the fields of plant nutrition, root hygiene, and control of plant-plant interactions. Thus, we have before us an exciting field of study involving the combined efforts of plant physiologists, microbiologists, and soil scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aghihotri, V. P. 1964. Studies on Aspergilli. XIV. Effect of foliar spray of urea on the Aspergilli of the rhizosphere ofTriticum vulgare L. Plant & Soil20: 364–370.

    Article  Google Scholar 

  • Ayres, W. A., &R. H. Thornton. 1968. Exudation of amino acids by intact and damaged roots of wheat and peas. Plant & Soil28: 193–207.

    Article  Google Scholar 

  • Bird, A. F. 1959. The attractiveness of roots to the plant parasitic nematodesMeloidogyne javanica andM. hapla. Nematologica4: 322–335.

    Article  Google Scholar 

  • Bonner, J. 1946. Relation of toxic substances to growth of guayule in soil. Bot. Gaz.107: 343–351.

    Article  CAS  Google Scholar 

  • — 1950. The role of toxic substances in the interactions of higher plants. Bot. Rev.16: 51–65.

    CAS  Google Scholar 

  • — &A. W. Galston. 1944. Toxic substances from the culture media of guayule which may inhibit growth. Bot Gaz.106: 185–198.

    Article  CAS  Google Scholar 

  • Borner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev.26: 393–424.

    CAS  Google Scholar 

  • Boulter, D., J. J. Jeremy, &M. Wilding. 1966. Amino acids liberated into the culture medium by pea seedling roots. Plant & Soil24: 121–127.

    Article  CAS  Google Scholar 

  • Bowen, G. D. 1968. Chloride efflux alongPinus radiata roots. Nature218: 686–687.

    Article  CAS  Google Scholar 

  • -. 1969. Nutrient status effects on loss of amides and amino acids from pine roots. Plant & Soil30: (in press).

  • — &A. D. Rovira. 1961. Plant growth in irradiated soil. Nature191: 936–937.

    Article  Google Scholar 

  • ——. 1967. Phosphate uptake along attached and excised roots measured by an automatic scanning method. Aust. Jour. Biol. Sci.20: 369–378.

    CAS  Google Scholar 

  • Brown, R., &M. Edwards. 1944. The germination of the seed ofStriga lutea. 1. Host influence and the progress of germination. Ann. Bot. (London) II.8: 131–148.

    Google Scholar 

  • Buxton, E. W. 1957. Some effects of pea root exudates on physiologic races ofFusarium oxysporum Fr. F.pisi (Linf.) Snyder and Hansen. Trans. Brit. Mycol. Soc.40: 145–154.

    Article  CAS  Google Scholar 

  • Calum, C. T., H. Raistrick, &A. R. Todd. 1949. The potato eelworm hatching factor. 1. The preparation of concentrates of the hatching factor and a method of bioassay. Biochem. Jour.45: 513–519.

    Google Scholar 

  • Clarke, A. J., &Elizabeth Widdowson. 1966. The hatching factor of the potato-root eelworm. Biochem. Jour.98: 862–868.

    CAS  Google Scholar 

  • Clayton, M. F., &J. A. Lamberton. 1964. A study of root exudates by the fog-box technique. Aust. Jour. Biol. Sci.17: 855–866.

    Google Scholar 

  • Davey, C. B., &G. C. Papavizas. 1961. Translocation of streptomycin fromColeus leaves and its effect on rhizosphere bacteria. Science134: 1368–1369.

    Article  PubMed  CAS  Google Scholar 

  • Elkan, G. 1961. A nodulation-inhibiting root excretion from a non-nodulating soybean strain. Canad. Jour. Microbiol7: 851–856.

    Article  CAS  Google Scholar 

  • Ellenby, C., &A. G. Gilbert. 1960. Progress in the study of the physiology of the hatching factor of the potato root eelworm,Heterodera rostochiensis Wollenweber. Nematologica, Supp. II,1960: 106–111.

    Google Scholar 

  • Fedorovski, D. V. 1958. Excretion of labelled phosphorus and calcium by roots into the soil at nutrition of plants through roots. Pochvovdenie, No. 3: 17–23.

  • Fenwick, D. W. 1957. Some experiments on the vacuum distillation of potato root diffusate. Nematologica2: 277–284.

    Google Scholar 

  • Foy, C. L., &W. Hurtt. 1967. Further studies on root exudation of exogenous growth regulators inPhaseolus vulgaris L. Weed Soc. Amer. p. 40 (Abstr.).

  • Frenzel, B. 1960. Zur Ätiologie der Anreicherung von Aminosäuren und Amiden im Wurzelraum vonHelianthus annus L.: ein Beitrag zur klärung der Probleme der Rhizosphäre. Planta55: 169–207.

    Article  CAS  Google Scholar 

  • Garb, S. 1961. Differential growth-inhibitors produced by plants. Bot. Rev.27: 422–443.

    Google Scholar 

  • Goodman, R. N. 1962. Systemic effects of antibiotics, p. 165–184.In:M. Woodbine [ed] Antibiotics in Agriculture. Proc. Univ. Nottingham, 9th Easter School. Butterworths, London.

    Google Scholar 

  • Gunner, H. B., B. M. Zuckerman, R. W. Walker, C. W. Miller, K. H. Deubert, &Ruth E. Longley. 1966. The distribution and persistence of Diazinon applied to plant and soil and its influence on rhizosphere and soil microflora. Plant & Soil25: 249–264.

    Article  CAS  Google Scholar 

  • Harmsen, G. W., &G. Jager. 1962. Determination of the quality of carbon and nitrogen in the rhizosphere of young plants. Nature195: 1119–1120.

    Article  CAS  Google Scholar 

  • ——. 1963. Determination of the quantity of carbon and nitrogen in the rhizosphere of young plants, p. 245–251.In:J. Doesken &J van der Drift, [eds.] Soil Organisms. North-Holland, Amsterdam.

    Google Scholar 

  • Head, G. C. 1964. A study of ‘exudation’ from root hairs of apple roots by time-lapse cine-photomicrography. Ann. Bot. (London) II.28: 495–498.

    Google Scholar 

  • Holland, A. A. 1962. The effect of indigenous saprophytic fungi upon nodulation and establishment of subterranean clover, pp. 147–164.In:M. Woodbine, [ed] Antibiotics in Agriculture. Proc. Univ. Nottingham, 9th Easter School. Butterworths, Lond.

    Google Scholar 

  • Horst, R. K., &L. I. Kerr. 1962. Effects of foliar urea treatment on numbers of actinomycetes antagonistic toFusarium roseum fcerealis in the rhizosphere of corn seedlings. Phytopathology52: 423–427.

    CAS  Google Scholar 

  • Hurtt, W., &C. L. Foy. 1965. Some factors influencing the excretion of foliarly-applied dicamba and picloram from roots of Black Valentine Beans. Plant Physiol. (Supp.)40: xlviii.

    Google Scholar 

  • Husain, S. S., &W. E. McKeen. 1963. Interactions between strawberry roots andRhizoctonia fragariae. Phytopathology53: 541–545.

    Google Scholar 

  • Ivanov, V. P. 1962. Mutual effect through the root system of a mixed crop of corn and broad beans. Fiziol. Rast.9 (2): 179–188.

    CAS  Google Scholar 

  • G. A. Yacobsen, &B. S. Fomenko. 1964. Effect of soil moisture on metabolism of root excretions. Fiziol. Rast.11: 630–637.

    Google Scholar 

  • Kansouh, A. S. H., &T. L. Hopkins. 1968. Diazinon absorption, translocation and metabolism in bean plants. Jour. Agr. Food Chem.16: 446–450.

    Article  CAS  Google Scholar 

  • Katznelson, H. 1965. Nature and importance of the rhizosphere, p. 187–209.K. F. Baker &W. C. Snyder. [eds]In: Ecology of Soil-Borne Plant Pathogens. Prelude to Biological Control. Berkeley, Univ. Calif. Press.

    Google Scholar 

  • —,J. W. Rouatt, &T. M. B. Payne. 1954. Liberation of amino acids by plant roots in relation to desiccation. Nature174: 1110–1111.

    Article  PubMed  CAS  Google Scholar 

  • ———. 1955. The liberation of amino acids and reducing compounds by plant roots. Plant & Soil7: 35–48.

    Article  CAS  Google Scholar 

  • Linder, P. J., J. C. Craig, F. E. Cooper, &J. W. Mitchell. 1958. Movement of 2, 3, 6-trichlorobenzoic acid from one plant to another through their root systems. Jour. Agr. Food Chem.6: 356–357.

    Article  CAS  Google Scholar 

  • ——, &T. R. Walton. 1957. Movement of C-14-tagged alphamethoxy phenylacetic acid out of roots. Plant Physiol. (Lancaster)32: 572–575.

    CAS  Google Scholar 

  • —,J. W. Mitchell, &Greta D. Freeman. 1964. Persistance and translocation of exogenous regulating compounds that exude from roots. Jour. Agr. Food Chem.12: 437–438.

    Article  CAS  Google Scholar 

  • Martin, P. 1957. Die Abgabe von organischen Verbindungen, insbesondere von Scopoletin, aus den keimwurzeln des Hafers. Zeitschr. Bot.45: 475–506.

    CAS  Google Scholar 

  • — 1958. Einfluss der Kulturfiltrate von Mikroorganismen auf die Abgabe von Skopoletin aus den Keimwurzeln des Hafers (Avena sativa L.) Arch Mikrobiol.29: 154–186.

    Article  PubMed  CAS  Google Scholar 

  • McCalla, T. M., F. A. Haskins. 1964. Phytotoxic substances from soil microorganisms and crop residues. Bact. Rev.28: 181–207.

    PubMed  CAS  Google Scholar 

  • McDougall, Barbara M. 1968. The exudation of C14-labeled substances from roots of wheat seedlings. Trans. 9th Congr. Int. Soil Sci. Soc, Adelaide3: 647–655.

    CAS  Google Scholar 

  • -. 1969. Movement of C14-photosynthate into roots of wheat seedlings and exudation of C14 from intact roots. New Phytologist (submitted).

  • —, &A. D. Rovira. 1965. Carbon-14 labeled photosynthate in wheat root exudates. Nature207: 1104–1105.

    Article  CAS  Google Scholar 

  • --. 1969. Sites of exudation of Cl4-substances from wheat roots. New Phytologist (submitted).

  • Meshkov, M. V. 1953. Works of Symposium on Soil Microbiology. p. 285, through Krasil’nikov, “Soil Micro-organisms and Higher Plants.” Translated and published for the N.S.F. and U.S.D.A. by the Israel Program for Scientific Translations 1961.

  • Mishustin, E. N., &A. N. Naumova. 1955. Secretion of toxic substances by alfalfa and their effects on cotton and soil microflora. Izvest. Akad. Nauk S.S.S.R., Ser. Biol.6: 3–9.

    Google Scholar 

  • Mitchell, J. W., P. J. Linder, &Melba B. Robinson. 1961. Mechanism of root exudation of α-methoxy phenyl acetic acid in the bean plant. Bot. Gaz.123: 134–137.

    Article  CAS  Google Scholar 

  • —,B. C. Smale, &W. H. Preston. 1959. New plant regulators that exude from roots. Jour. Agr. Food Chem.7: 841–843.

    Article  Google Scholar 

  • Norman, A. G. 1955. The effect of polymyxin on plant roots. Arch. Biochem. Biophys.58: 461–477.

    Article  PubMed  CAS  Google Scholar 

  • — 1961. Microbial products affecting root development. Trans. 7th Congr. Int. Soil Sci. Soc., Wisconsin2: 531–536.

    Google Scholar 

  • Parkinson, D. 1967. Soil micro-organisms and plant roots, p. 449–478.In:A. Burges andF. Raw. [eds] Soil Biology. Academic Press, London and New York.

    Google Scholar 

  • Patrick, Z. A., T. A. Toussoun, &L. W. Koch. 1964. Effect of crop-residue decomposition products on plant roots. Ann. Rev. Phytopath.2: 267–292.

    Article  CAS  Google Scholar 

  • ——. 1965. Plant residues and organic amendments in relation to biological control, p. 440–459.In:K. F. Baker &W. C. Sydney [eds] Ecology of Soil-Borne Plant Pathogens—Prelude to Biological Control. Berkeley, Univ. Calif. Press.

    Google Scholar 

  • Peacock, F. C. 1966. Nematode control by plant chemotherapy. Nematologica12: 70–86.

    Google Scholar 

  • Pearson, R., &D. Parkinson. 1961. The sites of excretion of ninhydrin positive substances by broad bean seedlings. Plant & Soil13: 391–396.

    Article  CAS  Google Scholar 

  • Preston, W. H., J. W. Mitchell, &W. Reeve. 1954. Movement of alpha-methoxy phenylacetic acid from one plant to another through their root systems. Science119: 437–438.

    Article  PubMed  CAS  Google Scholar 

  • Rahteenko, I. N. 1958. On the transfer of mineral nutrients from one plant to another owing to interactions between the root systems. Bot. Zhurnal43: 695–701.

    Google Scholar 

  • Ramachandra-Reddy, T. K. 1959. Foliar spray of urea and rhizosphere microflora of rice. (Oryza sativa L.) Phytopath Zeitschr.36: 286–289.

    Google Scholar 

  • Rice, E. L. 1964. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants (I). Ecology45: 824–837.

    Article  Google Scholar 

  • — 1965. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants II. Characterization and identification of inhibitors. Physiol. Plantarum18: 255–268.

    Article  CAS  Google Scholar 

  • Rivière, J. 1960. Étude de la rhizosphère du blé. Ann. Agronomiques11: 397–440.

    Google Scholar 

  • Robinson, A. C. 1967. The influence of host on soil and rhizosphere populations of clover and lucerne root nodule bacteria in the field. Jour. Australian Inst. Agr. Sci.33: 207–209.

    Google Scholar 

  • Rohde, R. E., &W. R. Jenkins. 1958. Basis for resistance ofAsparagus officinalis var.altius L. to the stubby root nematodeTrichodorus christiei. Univ. Maryland Agr. Exp. Sta. Bull. A97. 19 pp.

  • Roux, E. R. 1953. The effect of antibiotics produced byTrachypogon plumosus on the germination of seeds of the kakiebos (Tagetes minuta). South African Jour. Sci.49: 334.

    Google Scholar 

  • Rovira, A. D. 1956. Plant root excretions in relation to the rhizosphere effect. I. The nature of root exudate from oats and peas. Plant & Soil7: 178–194.

    Article  Google Scholar 

  • — 1959. Root excretions in relation to the rhizosphere effect. IV. Influence of plant species, age of plants, light, temperature and calcium nutrition on exudation. Plant & Soil11: 53–64.

    Article  CAS  Google Scholar 

  • — 1965a. Plant root exudates and their influence upon soil microorganisms, p. 170–186.In:K. F. Baker &W. C. Snyder [eds.] Ecology of Soil-Borne Plant Pathogens—Prelude to Biological Control. Berkeley, Univ. Calif. Press.

    Google Scholar 

  • — 1965b. Interactions between plant roots and soil microorganisms. Ann. Rev. Microbiol.19: 241–266.

    Article  CAS  Google Scholar 

  • -. 1969. Diffusion of carbon compounds away from wheat roots. Aust. Jour. Biol. Sci. (in press).

  • —, &G. D. Bowen. 1966. The effects of microorganisms upon plant growth. 2. Detoxication of heat-sterilized soils by fungi and bacteria. Plant & Soil25: 129–142.

    Article  Google Scholar 

  • -, &P. G. Brisbane. 1967. Numerical taxonomy and soil bacteria, p. 337–350.In: T. R. G. Gray & D. Parkinson [eds.] The Ecology of Soil Bacteria. Liverpool University Press.

  • —, &Barbara M. McDougall. 1967. Microbiological and biochemical aspects of the rhizosphere, p. 417–463.In:A. D. McLaren &G. F. Peterson [eds.] Soil Biochemistry. Marcel Dekker, New York.

    Google Scholar 

  • Russell, R. S., &J. Sanderson. 1967. Nutrient uptake by different parts of the intact roots of plants. Jour. Exp. Bot.18: 491–508.

    Article  Google Scholar 

  • Schroth, M. N., &D. C. Hildebrand. 1964. Influence of plant exudates on rootinfecting fungi. Ann. Rev. Phytopath.2: 101–132.

    Article  Google Scholar 

  • —, &W. C. Snyder. 1961. Effect of host exudates on chlamydospore germination of the bean root rot fungusFusarium solani F.phaseoli. Phytopathology51: 389–393.

    CAS  Google Scholar 

  • Slankis, V., V. C. Runeckles, &G. Krotkov. 1964. Metabolites liberated by roots of white pine (Pinus strobus L.) seedlings. Physiol. Plantarum17: 301–313.

    Article  CAS  Google Scholar 

  • Subba-Rao, M. S., R. G. S. Bidwell, &D. L. Bailey. 1962. Studies of rhizosphere activity by the use of isotopically labeled carbon. Canad. Jour. Bot.40: 203–212.

    Article  Google Scholar 

  • Timonin, M. I. 1941. The interaction of higher plants and soil microorganisms. III. The effects of by products of plant growth on activity of fungi and actinomycetes. Soil Sci.52: 395–413.

    Article  Google Scholar 

  • Toussoun, T. A., &Z. A. Patrick. 1963. Effect of phytotoxic substances from decomposing plant residues on root rot of bean. Phytopathology53: 265–270.

    CAS  Google Scholar 

  • Vancura, V. 1964. Root exudates of plants. 1. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant & Soil21: 231–248.

    Article  Google Scholar 

  • -, &A. Hovadik. 1965. Composition of root exudates in the course of plant development, p. 21–25.In: J. Macura & V. Vancura [eds.] Plant Microbes Relationships. Czech. Acad. Sci.

  • Venkata-Ram, C. S. 1960. Foliar application of nutrients and rhizosphere microflora ofCamellia sinensis. Nature187: 621–622.

    Article  Google Scholar 

  • Vrany, J., &J. Macura. 1963. The effect of antibiotics on the microflora of the surface of plant roots. Ust. Ved. Inf. MZLVH (Rostl. Vyroba)36: 702–6. [from Abstract in Soils & Fertilizers 27: 42 (1964)].

    Google Scholar 

  • —,V. Vancura, &J. Macura. 1962. The effects of foliar application of some readily metabolized substances, growth regulators and antibiotics on rhizosphere microflora. Fol. Microbiol.7: 61–70.

    CAS  Google Scholar 

  • -. 1965. Effect of foliar applications on rhizosphere microflora, p. 21–25.In: J. Macura and V. Vancura [eds.] Plant Microbes Relationships. Czech. Acad. Sci.

  • Wallace, H. R. 1958. Observations on the emergence from cysts and the orientation of larvae of three species of the genusHeterodera in the presence of host plant roots. Nematologica3: 236–243.

    Article  Google Scholar 

  • -. 1961. Factors influencing the ability ofHeterodera larvae to reach host plant roots.In: Recent Advances in Botany. Univ. Toronto Press, p. 407.

  • Widdowson, Elizabeth. 1958a. Potato root diffusate production. Nematologica3: 6–14.

    Google Scholar 

  • —. 1958b. The production of root diffusate by potatoes grown in water culture. Nematologica3: 108–114.

    Article  Google Scholar 

  • — 1958c. Observation on the collection and storage of potato root diffusate. Nematologica3: 173–178.

    Google Scholar 

  • Woods, F. W. 1960. Biological antagonisms due to phytotoxic root exudates. Bot. Rev.26: 546–569.

    Google Scholar 

  • —, &K. Brock. 1964. Interspecific transfer of Ca45 and P32 by root systems. Ecology45: 886–889.

    Article  Google Scholar 

  • Zentmeyer, G. A. 1961. Chemotaxis of zoospores for root exudates. Science133: 1595–1596.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rovira, A.D. Plant root exudates. Bot. Rev 35, 35–57 (1969). https://doi.org/10.1007/BF02859887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02859887

Keywords

Navigation