Skip to main content
Log in

Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The instantaneous rate of photosynthetic CO2 assimilation in C3 plants has generally been studied in model systems such as isolated chloroplasts and algae. From these studies and from theoretical analyses of gas exchange behavior it is now possible to study the biochemistry of photosynthesis in intact leaves using a combination of methods, most of which are nondestructive.

The limitations to the rate of photosynthesis can be divided among three general classes: (1) the supply or utilization of CO2, (2) the supply or utilization of light, and (3) the supply or utilization of phosphate. The first limitation is most readily studied by determining how the CO2 assimilation rate varies with the partial pressure of CO2 inside the leaf. The second limitation can be studied by determining the quantum requirement of photosynthesis. The third limitation is most easily detected as a loss of O2 sensitivity of photosynthesis.

Measurement of fluorescence from intact leaves can give additional information about the various limitations. These methods are all non-destructive and so can be observed repeatedly as the environment of a leaf is changed. In addition, leaves can be quick-frozen and metabolite concentrations then measured to give more information about the limitations to intact leaf photosynthesis rates.

In this review the physics and biochemistry of photosynthesis in intact C3 leaves, and the interface between physiology and photosynthesis—triose phosphate utilization—are discussed.

Zusammenfassung

Die photosynthetische CO2-Aufnahme wurde im allgemeinen an C3-Pflanzen während Kurzzeitexperimenten an Modellsystemen wie isolierten Chloroplasten und Algen erforscht. Aufgrund dieser Studien und der theoretischen Analysen über das Verhalten des Gasaustausches ist es nun möglich die Biochemie auch an intakten Blättern eingehender zu untersuchen und zwar, indem mehrere Methoden miteinander verknüpft angewandt werden, ohne das Blatt dabei zu verletzen.

Die Limitierung der Photosyntheserate kann in drei grosse Gruppen unterteilt werden: 1. Angebot oder Nutzung von CO2, 2. Angebot oder Nutzung von Licht, 3. Verfügbarkeit oder Nutzung von intermediären Phosphatpoolen. Die erst erwähnte Begrenzung der Photosyntheserate kann einfach dadurch untersucht werden, indem man ermittelt, inwieweit die Rate der CO2-Aufnahme mit dem CO2-Partialdruck im Blattinneren variiert; die zweite, indem man den Quantenbedarf bestimmt. Die dritte Beschränkung der Rate kann leicht durch den Verlust der Sauerstoffempfindlichkeit in der Photosynthese entdeckt werden.

Zusätzliche Information über die Art der verschiedenen Begrenzungen kann durch Fluorenszenzmessungen an intakten Blättern gewonnen werden. Da all diese Methoden am ganzen Blatt ausgeführt werden können, ohne es dabei zu beschädigen, können Messungen unter jeweils veränderten Umweltsbedingungen am gleichen Blatt wiederholt durchgeführt werden. Darüber hinaus können die Blätter schliesslich mit der Gefrierstop-Methode geerntet werden, um die Konzentration von Metaboliten zu messen, und so weitere Informationen über die Ursache der Begrenzung der Photosyntheserate im Bioassay zusätzlich zu den Ergebnissen am intakten Blatt erhalten werden.

In diesem Übersichtsartikel werden die physikalischen und biochemischen Aspekten der Photosynthese sowie das Zusammenspiel von Physiologie und Photosynthese—Triosephosphate-Nutzung—diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Ackerson, R. C. 1981. Osmoregulation in cotton in response to water stress II. Leaf carbohydrate status in relation to osmotic adjustment. Pl. Physiol.67: 489–493.

    CAS  Google Scholar 

  • Aflalo, C. andN. Shavit. 1983. Steady-state kinetics of photophosphorylation: Limited access of nucleotides to the active site on the ATP synthetase. FEBS Lett.154: 175–179.

    Article  CAS  Google Scholar 

  • Amir, J. andJ. Preiss. 1982. Kinetic characterization of spinach leaf sucrose-phosphate synthase. Pl. Physiol.69: 1027–1030.

    CAS  Google Scholar 

  • Andrews, T. J. andG. H. Lorimer. 1978. Photorespiration—Still unavoidable? FEBS Lett.90: 1–9.

    Article  CAS  Google Scholar 

  • Azcón-Bieto, J. 1983. Inhibition of photosynthesis by carbohydrates in wheat leaves. Pl. Physiol.73: 681–686.

    Google Scholar 

  • Badger, M. R. andG. H. Lorimer. 1981. Interaction of sugar phosphates with the catalytic site of ribulose-1, 5-bisphosphate carboxylase. Biochemistry20: 2219–2225.

    Article  PubMed  CAS  Google Scholar 

  • —,T. D. Sharkey andS. von Caemmerer. 1984. The relationship between steady-state gas exchange of bean leaves and the levels of carbon reduction cycle intermediates. Planta160: 305–313.

    Article  CAS  Google Scholar 

  • Bahr, J. T. andR. G. Jensen. 1974. Ribulose diphosphate carboxylase from freshly ruptured spinach chloroplasts having an in vivo Km[CO2]. Pl. Physiol.53: 39–44.

    CAS  Google Scholar 

  • Ball, M. C. 1981. Physiology of photosynthesis in two mangrove species: Responses to salinity and other environmental factors. Ph.D. thesis. Australian National University, Canberra.

    Google Scholar 

  • Bird, I. F., M. J. Cornelius, A. J. Keys andC. P. Whittingham. 1974. Intracellular site of sucrose synthesis in leaves. Phytochemistry13: 59–64.

    Article  CAS  Google Scholar 

  • Björkman, O. 1981. Responses to different quantum flux densities. Pages 57–107in O. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler (eds.), Encyclopedia of plant physiology, New Series. 12A. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • —,N. K. Boardman, J. M. Anderson, S. W. Thorne, D. J. Goodchild andN. A. Pyliotis. 1972. Effect of light intensity during growth ofAtriplex patula on the capacity for photosynthetic reactions, chloroplast components and structure. Carnegie Inst. Yearb.71: 115–135.

    Google Scholar 

  • Blackman, F. F. 1905. Optima and limiting factors. Ann. Bot.19: 281–295.

    Google Scholar 

  • Briantais, J. M., C. Vernotte, M. Picaud andG. H. Krause. 1979. A quantitative study of the slow decline of chlorophylla fluorescence in isolated chloroplasts. Biochim. Biophys. Acta548: 128–138.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, B. B. 1980. Role of light in the regulation of chloroplast enzymes. Annual Rev. Pl. Physiol.31: 341–374.

    Article  CAS  Google Scholar 

  • Canvin, D. T. 1978. Photorespiration and the effect of oxygen on photosynthesis. Pages 61–76in H. W. Siegelman and G. Hind (eds.), Photosynthetic carbon assimilation. Plenum Press, New York.

    Google Scholar 

  • Carmi, A. andB. Heuer. 1981. The role of roots in control of bean shoot growth. Ann. Bot.48:519–527.

    CAS  Google Scholar 

  • Cary, J. W. 1981. Calculation of CO2 gas phase diffusion in leaves and its relation to stomatal resistance. Photosyn. Res.2: 185–194.

    Article  Google Scholar 

  • Charles, S. A. andB. Halliwell. 1980. Properties of freshly purified and thiol-treated spinach chloroplast fructose bisphosphatase. Biochem. J.185: 689–693.

    PubMed  CAS  Google Scholar 

  • Chartier, P., M. Chartier andJ. Catsky. 1970. Resistances for carbon dioxide diffusion and for carboxylation as factors in bean leaf photosynthesis. Photosynthetica4: 48–57.

    CAS  Google Scholar 

  • Christeller, J. T., W. A. Laing andJ. H. Troughton. 1976. Isotope discrimination by ribulose 1,5-diphosphate carboxylase. No effect of temperature or HCO3 concentration. Pl. Physiol.57: 580–582.

    CAS  Google Scholar 

  • Claussen, W. andF. Lenz. 1983. Investigations on the relationship between sucrose phosphate synthetase activity and net photosynthetic rates, and sucrose and starch content of leaves ofSolanum melongena. Z. Pflanzenphysiol.109: 459–468.

    CAS  Google Scholar 

  • Cornic, G. andG. Louason. 1980. The effects of O2 on net photosynthesis at low temperature (5°C). Pl. Cell Environ.3: 149–157.

    CAS  Google Scholar 

  • — andE. Miginiac. 1983. Nonstomatal inhibition of net CO2 uptake by (±) abscisic acid inPharbitis nil. Pl. Physiol.73: 529–533.

    CAS  Google Scholar 

  • —,J-L. Prioul andG. Louason. 1983. Stomatal and non-stomatal contribution in the decline in leaf net CO2 uptake during rapid water stress. Physiol. Pl.58: 295–301.

    Article  Google Scholar 

  • Cowan, I. R. 1977. Stomatal behaviour and environment. Advances Bot. Res.4: 117–228.

    Google Scholar 

  • — andG. D. Farquhar. 1977. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol.31: 471–505.

    PubMed  CAS  Google Scholar 

  • Cséke, C. andB. B. Buchanan. 1983. An enzyme synthesizing fructose 2,6-bisphosphate occurs in leaves and is regulated by metabolite effectors. FEBS Lett.155: 139–142.

    Article  Google Scholar 

  • —,N. F. Weeden, B. B. Buchanan andK. Uyeda. 1982. A special fructose bisphosphate functions as a cytoplasmic regulatory metabolite in green leaves. Proc. Natl. Acad., U.S.A.79: 4322–4326.

    Article  Google Scholar 

  • Davies, D. D. 1979. The central role of phosphoenol pyruvate in plant metabolism. Annual Rev. Pl. Physiol.30: 131–158.

    Article  CAS  Google Scholar 

  • Doehlert, D. C. andS. C. Huber. 1983. Regulation of spinach leaf sucrose phosphate synthase by glucose-6-phosphate, inorganic phosphate, and pH. Pl. Physiol.73: 989–994.

    CAS  Google Scholar 

  • Edwards, G. E., S. P. Robinson, N. J. C. Tyler andD. A. Walker. 1978. Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat. Pl. Physiol.62: 313–319.

    CAS  Google Scholar 

  • Ehleringer, J. andO. Björkman. 1977. Quantum yields for CO2 uptake in C3 and C4 plants. Pl. Physiol.59: 86–90.

    CAS  Google Scholar 

  • — andI. Forseth. 1980. Solar tracking by plants. Science210: 1094–1098.

    Article  PubMed  CAS  Google Scholar 

  • Eller, B. M. 1977. Leaf pubescence: The significance of lower surface hairs for the spectral properties of the upper surface. J. Exp. Bot.28: 1054–1059.

    Article  Google Scholar 

  • Enser, U. andU. Heber. 1980. Metabolic regulation by pH gradients: Inhibition of photosynthesis by indirect proton transfer across the chloroplast envelope. Biochim. Biophys. Acta592: 577–591.

    Article  PubMed  CAS  Google Scholar 

  • Evans, J. R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Pl. Physiol.72: 297–302.

    CAS  Google Scholar 

  • Farquhar, G. D. 1979. Models describing the kinetics of ribulose bisphosphate carboxylase-oxygenase. Arch. Biochem. Biophys.193: 456–468.

    Article  PubMed  CAS  Google Scholar 

  • —,M. H. O’Leary andJ. A. Berry. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Austral. J. Pl. Physiol.9: 121–137.

    CAS  Google Scholar 

  • — andT. D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annual Rev. Pl. Physiol.33: 317–345.

    Article  CAS  Google Scholar 

  • — andS. von Caemmerer. 1982. Modelling of photosynthetic response to environmental conditions. Pages 549–587in O. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler (eds.), Encyclopedia of plant physiology, New Series. 12B. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • ——. 1981. Electron transport limitations on the CO2 assimilation rate of leaves: A model and some observations inPhaseolus vulgaris L. Pages 163–175in G. Akoyunoglou (ed.), Proc. 5th Int. Photosyn. Congr. Photosyn. IV: Regulation of carbon metabolism. Balaban Int.-Sci. Serv., Philadelphia.

    Google Scholar 

  • —— andJ. A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta149: 78–90.

    Article  CAS  Google Scholar 

  • Flügge, U. I., M. Freisl andH. W. Heldt. 1980. The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Planta149: 48–51.

    Article  Google Scholar 

  • — andH. W. Heldt. 1981. The phosphate translocator of the chloroplast envelope. Isolation of the carrier protein and reconstitution of transport. Biochim. Biophys. Acta638: 296–304.

    Article  Google Scholar 

  • Forseth, I. N. andJ. R. Ehleringer. 1983. Ecophysiplogy of two solar tracking desert winter annuals. III. Gas exchange responses to light, CO2 and VPD in relation to longterm drought. Oecologia57: 344–351.

    Article  Google Scholar 

  • Foyer, C., J. Rowell andD. Walker. 1983. The effect of sucrose on the rate of de novo sucrose biosynthesis in leaf protoplasts from spinach wheat and barley. Arch. Biochem. Biophys.220: 232–238.

    Article  PubMed  CAS  Google Scholar 

  • Furbank, R. T. andR. McC. Lilley. 1980. Effects of inorganic phosphate on the photosynthetic carbon reduction cycle in extracts from the stroma of pea chloroplasts. Biochim. Biophys. Acta592: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Gaastra, P. 1959. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Meded. Landb. Hogesch. Wageningen59(13): 1–68.

    Google Scholar 

  • Gallaher, R. N. andR. H. Brown. 1977. Starch storage in C3 and C4 grass leaf cells as related to nitrogen deficiency. Crop Sci.17: 85–88.

    Article  CAS  Google Scholar 

  • Gardemann, A., M. Stitt andH. W. Heldt. 1983. Control of CO2 fixation. Regulation of spinach ribulose-5-phosphate kinase by stromal metabolite levels. Biochim. Biophys. Acta722: 51–60.

    Article  CAS  Google Scholar 

  • Geiger, D. R. 1976. Effects of translocation and assimilate demand on photosynthesis. Canad. J. Bot.54: 2337–2345.

    Google Scholar 

  • Gibbs, M. andE. Latzko (eds.). 1979. Encyclopedia of plant physiology, New Series, v. 6, Photosynthesis II. Photosynthetic carbon metabolism and related processes. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Giersch, C. 1977. A kinetic model for translocators in the chloroplast envelope as an element of computer simulation of the dark reaction of photosynthesis. Z. Naturf.32: 263–270.

    Google Scholar 

  • —,U. Heber andG. H. Krause. 1980a. ATP transfer from chloroplasts to the cytosol of leaf cells during photosynthesis and its effect on leaf metabolism. Pages 65–79in R. M. Spanswick, W. J. Lucas and J. Dainty (eds.), Plant membrane transport: Current conceptual issues. Elsevier, New York.

    Google Scholar 

  • ——,G. Kaiser, D. A. Walker andS. P. Robinson. 1980b. Intracellular metabolite gradients and flow of carbon during photosynthesis of leaf protoplasts. Arch. Biochem. Biophys.205: 246–259.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee (ed.). 1982a. Photosynthesis. Vol. 1. Energy conversion by plants and bacteria. Academic Press, New York.

    Google Scholar 

  • — (ed.). 1982b. Photosynthesis. Vol. 2. Development, carbon metabolism, and plant productivity. Academic Press, New York.

    Google Scholar 

  • Gray, M. W. andW. F. Doolittle. 1982. Has the endosymbiont hypothesis been proven? Microbiol. Rev.46: 1–42.

    PubMed  CAS  Google Scholar 

  • Hangarter, R. P. andN. E. Good. 1982. Energy thresholds for ATP synthesis in chloroplasts. Biochim. Biophys. Acta681: 397–404.

    Article  CAS  Google Scholar 

  • Harris, G. C., J. K. Cheesbrough andD. A. Walker. 1983. Effects of mannose on photosynthetic gas exchange in spinach leaf discs. Pl. Physiol.71: 108–111.

    CAS  Google Scholar 

  • Hatch, A. L. andR. G. Jensen. 1980. Regulation of ribulose-1,5-bisphosphate carboxylase from tobacco: Changes in pH response and affinity for CO2 and Mg2+ induced by chloroplast intermediates. Arch. Biochem. Biophys.205: 587–594.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, W. 1982. Light-mediated movement of chloroplasts. Annual Rev. Pl. Physiol.33: 205–233.

    Article  CAS  Google Scholar 

  • Heber, U. andH. W. Heldt. 1981. The chloroplast envelope: Structure, function and role in leaf metabolism. Annual Rev. Pl. Physiol.32: 139–168.

    Article  CAS  Google Scholar 

  • — andK. A. Santarius. 1970. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z. Naturf.25: 718–728.

    CAS  Google Scholar 

  • Heldt, H. W., C. J. Chon andG. H. Lorimer. 1978. Phosphate requirement for the light activation of ribulose-1,5-bisphosphate carboxylase in intact spinach chloroplasts. FEBS Lett.92: 234–240.

    Article  CAS  Google Scholar 

  • Herold, A. 1980. Regulation of photosynthesis by sink activity—The missing link. New Phytol.86: 131–144.

    Article  CAS  Google Scholar 

  • — andD. H. Lewis. 1977. Mannose and green plants: Occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol.79: 1–40.

    Article  CAS  Google Scholar 

  • Hill, R. andC. P. Whittingham. 1955. Photosynthesis. Methuen & Co. Ltd., London.

    Google Scholar 

  • Huber, S. C. 1979a. Orthophosphate control of glucose-6-phosphate dehydrogenase light modulation in relation to the induction phase of chloroplast photosynthesis. Pl. Physiol.64: 846–851.

    Article  CAS  Google Scholar 

  • —. 1979b. Effect of pH on chloroplast photosynthesis. Inhibition of O2 evolution by inorganic phosphate and magnesium. Biochim. Biophys. Acta545: 131–140.

    Article  PubMed  CAS  Google Scholar 

  • —. 1981. Interspecific variation in activity and regulation of leaf sucrose phosphate synthetase. Z. Pflanzenphysiol.102: 443–450.

    CAS  Google Scholar 

  • — andD. W. Israel. 1982. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max Merr.) leaves. Pl. Physiol.69:691–696.

    CAS  Google Scholar 

  • Jarman, P. D. 1974. The diffusion of carbon dioxide and water vapour through stomata. J. Exp. Bot.25: 927–936.

    Article  Google Scholar 

  • Jensen, R. J. andJ. T. Bahr. 1977. Ribulose 1,5-bisphosphate carboxylase-oxygenase. Annual Rev. Pl. Physiol.28: 379–400.

    Article  CAS  Google Scholar 

  • —,K. A. Mott, D. A. Raynes andJ. T. Perchorowicz. 1984. Role of the activation status of the ribulose 1,5-bisphosphate carboxylase in regulating photosynthesis. Pages 735–738in C. Sybesma (ed.), Advances in photosynthesis research. III. Martinus Nijhoff/ Dr. W. Junk, The Hague.

    Google Scholar 

  • Jolliffe, P. A. andE. B. Tregunna. 1973. Environmental regulation of the oxygen effect on apparent photosynthesis in wheat. Canad. J. Bot.51: 841–853.

    CAS  Google Scholar 

  • Jones, H. G. 1973. Limiting factors in photosynthesis. New Phytol.72: 1089–1094.

    Article  Google Scholar 

  • Kende, H. 1971. The cytokinins. Int. Rev. Cytol.31: 301–338.

    PubMed  CAS  Google Scholar 

  • King, R. W., I. F. Wardlaw andL. T. Evans. 1967. Effect of assimilate utilization on photosynthetic rate in wheat. Planta77: 261–276.

    Article  Google Scholar 

  • Kobayashi, Y., Y. Inoue, K. Shibata andU. Heber. 1979. Control of electron flow in intact chloroplasts by the intrathylakoid pH, not by phosphorylation potential. Planta146: 481–486.

    Article  CAS  Google Scholar 

  • Krause, G. H. 1973. The high energy state of the thylakoid system as indicated by chlorophyll fluorescence and chloroplast shrinkage. Biochim. Biophys. Acta292: 715–728.

    Article  PubMed  CAS  Google Scholar 

  • —,J. M. Briantais andC. Vernotte. 1981. Two mechanisms of reversible fluorescence quenching in chloroplasts.In G. Akoyunoglou (ed.), Proc. 5th Int. Photosyn. Congr. Balaban Int.-Sci. Serv., Philadelphia.

    Google Scholar 

  • Laing, W. A., W. L. Ogren andR. H. Hageman. 1974. Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose 1,5-diphosphate carboxylase. Pl. Physiol.54: 678–685.

    CAS  Google Scholar 

  • ———. 1975. Bicarbonate stabilization of ribulose-1,5-bisphosphate carboxylase. Biochemistry14: 2269–2275.

    Article  PubMed  CAS  Google Scholar 

  • —,M. Stitt andH. W. Heldt. 1981. Control of CO2 fixation. Changes in the activity of ribulose phosphate kinase and fructose-and sedoheptulose-bisphosphatase in chloroplasts. Biochim. Biophys. Acta637: 348–359.

    Article  CAS  Google Scholar 

  • Laisk, A. M. 1977. Kinetics of photosynthesis and photorespiration of C3 plants. Nauka, Moscow (in Russian).

    Google Scholar 

  • Latzko, E., R. W. Garnier andM. Gibbs. 1970. Effect of photosynthesis, photosynthesis inhibitors, and oxygen on the activity of ribulose 5-phosphate kinase. Biochem. Biophys. Res. Commun.39: 1140–1144.

    Article  PubMed  CAS  Google Scholar 

  • Leegood, R. C., Y. Kobayashi, S. Neimanis, D. A. Walker andU. Heber. 1982. Co-operative activation of chloroplast fructose-1,6-bisphosphatase by reductant, pH and substrate. Biochim. Biophys. Acta682: 168–178.

    Article  CAS  Google Scholar 

  • Leuning, R. 1983. Transport of gases into leaves. Pl. Cell Environ.6: 181–194.

    CAS  Google Scholar 

  • Lilley, R. McC. 1983. Chloroplast metabolism: The pathways of primary carbon metabolism in C3 plants. Pl. Cell Environ.6: 329–343.

    CAS  Google Scholar 

  • —,C. J. Chon, A. Mosbach andH. W. Heldt. 1977. The distribution of metabolites between spinach chloroplasts and medium during photosynthesis in vitro. Biochim. Biophys. Acta460: 259–272.

    Article  PubMed  CAS  Google Scholar 

  • — andD. A. Walker. 1975. Carbon dioxide assimilation by leaves, isolated chloroplasts, and ribulose bisphoshate carboxylase from spinach. Pl. Physiol.55: 1087–1092.

    CAS  Google Scholar 

  • Lorimer, G. H. 1981. The carboxylation and oxygenation of ribulose-1,5-bisphosphate: The primary events in photosynthesis and photorespiration. Annual Rev. Pl. Physiol.32: 349–383.

    Article  CAS  Google Scholar 

  • —,M. R. Badger andT. J. Andrews. 1976. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism and physiological implications. Biochemistry15: 529–536.

    Article  PubMed  CAS  Google Scholar 

  • McNally, S. F., H. Bertrand, P. Gadal, A. F. Mann andG. R. Stewart. 1983. Glutamine synthetases of higher plants. Evidence for a specific isoform content related to their possible physiological role and their compartmentation within the leaf. Pl. Physiol.72: 22–25.

    Article  CAS  Google Scholar 

  • McVetty, P. B. E. andD. T. Canvin. 1981. Inhibition of photosynthesis by low oxygen concentrations. Canad. J. Bot.59: 721–725.

    Article  CAS  Google Scholar 

  • Medina, E. 1971. Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxydismutase activity of leaves ofAtriplex patula ssp.hastata. Carnegie Inst. Wash. Yearb.70: 551–559.

    Google Scholar 

  • Meidner, H. 1955. The determination of paths of air movement of leaves. Physiol. Pl.8: 930–935.

    Article  Google Scholar 

  • —. 1967. The effect of kinetin on stomatal opening and the rate of intake of carbon dioxide in mature primary leaves of barley. J. Exp. Bot.18: 556–561.

    Article  CAS  Google Scholar 

  • Mott, K. A. andJ. W. O’Leary. 1984. Stomatal behavior and CO2 exchange characteristics in amphistomatous leaves. Pl. Physiol.74: 47–51.

    CAS  Google Scholar 

  • Mourioux, G. andR. Donce. 1981. Slow passive diffusion of orthophosphate between intact isolated chloroplasts and suspending medium. Pl. Physiol.67: 470–473.

    Article  CAS  Google Scholar 

  • Neales, T. F. andL. D. Incoll. 1968. The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: A review of the hypothesis. Bot. Rev.34: 107–125.

    Google Scholar 

  • Nobel, P. S. 1977. Internal leaf area and cellular CO2 resistance: Photosynthetic implications of variations with growth conditions and plant species. Physiol. Pl.40: 137–144.

    Article  CAS  Google Scholar 

  • —. 1980. Leaf anatomy and water-use efficiency. Pages 43–45in N. C. Turner, and P. J. Kramer (eds.), Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York.

    Google Scholar 

  • —,L. J. Zaragoza andW. K. Smith. 1975. Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves ofPlectranthus parviflorus Henckel. Pl. Physiol.55: 1067–1070.

    CAS  Google Scholar 

  • Ogren, W. L. andG. Bowes. 1971. Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biol.230: 159–160.

    PubMed  CAS  Google Scholar 

  • Parkinson, K. J. andH. L. Penman. 1970. A possible source of error in the estimation of stomatal resistance. J. Exp. Bot.31: 333–345.

    Google Scholar 

  • Penman, H. L. andR. K. Schofield. 1951. Some physical aspects of assimilation and transpiration. Symp. Soc. Exp. Biol.5: 115–129.

    Google Scholar 

  • Portis, A. R. 1983. Analysis of the role of the phosphate translocator and external metabolites in steady-state chloroplast photosynthesis. Pl. Physiol.71: 936–943.

    Article  CAS  Google Scholar 

  • Preiss, J. 1982. Regulation of the biosynthesis and degradation of starch. Annual Rev. Pl. Physiol.33:431–454.

    Article  CAS  Google Scholar 

  • Raschke, K. 1979. Movements of stomata. Pages 383–441in W. Haupt and M. E. Feinleib (eds.), Encyclopedia of plant physiology, New Series. 7. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • —. 1982. Involvement of abscisic acid in the regulation of gas exchange: Evidence and inconsistencies. Pages 581–590in P. F. Wareing (ed.), Plant growth substances. Academic Press, New York, London.

    Google Scholar 

  • Robinson, S. P. andD. A. Walker. 1981. Photosynthetic carbon reduction cycle. Pages 193–236in M. D. Hatch and N. K. Boardman (eds.), The biochemistry of plants. A comprehensive treatise. Vol. 8. Photosynthesis. Academic Press, New York.

    Google Scholar 

  • Rufty, T. W. andS. C. Huber. 1983. Changes in starch formation and activities of sucrose phosphate synthase and cytoplasmic fructose-1,6-bisphosphatase in response to source-sink alterations. Pl. Physiol.72: 474–480.

    Article  CAS  Google Scholar 

  • Rühle, W. andA. Wild. 1979. The intensification of absorbance changes in leaves by light-dispersion differences between high-light and low-light leaves. Planta146: 551–557.

    Article  Google Scholar 

  • Santarius, K. A. andU. Heber. 1965. Changes in the intracellular levels of ATP, ADP, AMP and Pi and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim. Biophys. Acta102: 39–54.

    Article  PubMed  CAS  Google Scholar 

  • Sanwal, G. G., E. Greenberg, J. Hardie, E. C. Cameron andJ. Preiss. 1968. Regulation of starch biosynthesis in plant leaves: Activation and inhibition of ADPglucose pyrophosphorylase. Pl. Physiol.43: 417–427.

    CAS  Google Scholar 

  • Schnarrenberger, C. andH. Fock. 1976. Interactions among organelles involved in photorespiration. Pages 185–234in C. R. Stocking and U. Heber (eds.), Encyclopedia of plant physiology, New Series. 3. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Seemann, J. R., J. M. Tepperman andJ. A. Berry. 1981. The relationship between photosynthetic performance and the levels and kinetic properties of RuBP carboxylase-oxygenase from desert winter annuals. Carnegie Inst. Wash. Yearb.80: 67–72.

    Google Scholar 

  • Selman, B. R. andS. Selman-Reimer. 1981. The steady state kinetics of photophosphorylation. J. Biol. Chem.256: 1722–1726.

    PubMed  CAS  Google Scholar 

  • Sharkey, T. D. 1979. Stomatal responses to light inXanthium strumarium and other species. Ph.D. thesis. Michigan State Univ., East Lansing, Michigan, U.S.A.

    Google Scholar 

  • —. 1984. Transpiration induced changes in the photosynthetic capacity of leaves. Planta160: 143–150.

    Article  Google Scholar 

  • — andM. R. Badger. 1982. Effects of water stress on photosynthetic electron transport, photophosphorylation and metabolite levels ofXanthium strumarium mesophyll cells. Planta156: 199–206.

    Article  CAS  Google Scholar 

  • ——. 1984. Factors limiting photosynthesis as determined from gas exchange characteristics and metabolite pool sizes. Pages 325–328in C. Sybesma (ed.), Advances in photosynthesis research. Vol. IV. Martinus Nijhoff/Dr. W. Junk. The Hague/Boston/Lancaster.

    Google Scholar 

  • —,K. Imai, G. D. Farquhar andI. R. Cowan. 1982a. A direct confirmation of the standard method of estimating intercellular partial pressure of CO2. Pl. Physiol.69: 657–659.

    CAS  Google Scholar 

  • —,G. F. Stevenson andD. M. Paton. 1982b. Effects of G, a growth regulator fromEucalyptus grandis, on photosynthesis. Pl. Physiol.69: 935–938.

    CAS  Google Scholar 

  • — andK. Raschke. 1980. Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Pl. Physiol.65: 291–297.

    CAS  Google Scholar 

  • Shavit, N. 1980. Energy transduction in chloroplasts: Structure and function of the ATPase complex. Annual Rev. Biochem.49: 111–138.

    Article  CAS  Google Scholar 

  • Sivak, M. N., R. T. Prinsley andD. A. Walker. 1983. Some effects of changes in gas phase on the steady-state chlorophylla fluorescence exhibited by illuminated leaves. Proc. Roy. Soc. Lond., Ser. B, Biol. Sci.217: 393–404.

    CAS  Google Scholar 

  • — andD. A. Walker. 1983. Some effects of CO2 concentration and decreased O2 concentration on induction fluorescence in leaves. Proc. Roy. Soc. Lond. Ser. B, Biol. Sci.217: 377–392.

    CAS  Google Scholar 

  • Stålfelt, M. G. 1960. Die Frage der begrenzenden Factoren (Allgemeines). Das Zusammenwirken der Äußeren of Plant Physiology. Pages 213–225in A. Pirson (ed.), Encyclopedia of plant physiology. Vol. V/2. The assimilation of carbon dioxide. Springer, Berlin, Göttingen, Heidelberg.

    Google Scholar 

  • Steup, M., D. G. Peavey andM. Gibbs. 1976. The regulation of starch metabolism by inorganic phosphate. Biochem. Biophys. Res. Comm.72: 1554–1561.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M. andH. W. Heldt. 1981. Simultaneous synthesis and degradation of starch in spinach chloroplasts in the light. Biochim. Biophys. Acta638: 1–11.

    Article  CAS  Google Scholar 

  • —,B. Herzog, R. Gerhardt, B. Küzel andW. Heldt. 1984. Regulation of photosynthetic sucrose synthesis by fructose 2,6-bisphosphate. Pages 609–611in C. Sybesma (ed.), Advances in photosynthesis research. Vol. III. Martinus Nijhoff/Dr. W. Junk, The Hague, Boston, Lancaster.

    Google Scholar 

  • —,G. Mieskes, H-D. Soling andH. W. Heldt. 1982. On a possible role of fructose 2,6-bisphosphate in regulating photosynthetic metabolism in leaves. FEBS Lett.145: 217–222.

    Article  CAS  Google Scholar 

  • —,W. Wirtz andH. W. Heldt. 1980. Metabolite levels during induction in the chloroplast and extrachloroplast compartments of spinach protoplasts. Biochim. Biophys. Acta593: 85–102.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. E. andN. Terry. 1984. Limiting factors in photosynthesis. V. Photochemical energy supply colimits photosynthesis at low values of intercellular CO2 concentration. Pl. Physiol.75: 82–86.

    Article  CAS  Google Scholar 

  • Terashima, I. andY. Inoue. 1984. Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts ofCamellia japonica L.: Functional adjustment of photosynthetic apparatus to light environment within a leaf. Pl. Cell Physiol.25: 555–564.

    CAS  Google Scholar 

  • — andT. Saeki. 1983. Light environment within a leaf I. Optical properties of paradermal sections ofCamellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Pl. Cell Physiol.24: 1493–1501.

    CAS  Google Scholar 

  • Tolbert, N. E. 1971. Microbodies, peroxysomes and glyoxysomes. Annual Rev. Pl. Physiol.22: 45–74.

    Article  CAS  Google Scholar 

  • Trebst, A. andM. Avron (eds.). 1977. Encyclopedia of plant physiol. New Series. V. 5. Photosynthesis. I. Photosynthetic electron transport and photophosphorylation. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Usuda, H. andG. E. Edwards. 1982. Influence of varying CO2 and orthophosphate concentrations on rates of photosynthesis, and synthesis of glycolate and dihydroxyacetone phosphate by wheat chloroplasts. Pl. Physiol.69: 469–473.

    CAS  Google Scholar 

  • van den Honert, T. H. 1930. Carbon dioxide assimilation and limiting factors. Rec. Trav. Bot. Néerl.27: 149–285.

    Google Scholar 

  • Velthuys, B. R. 1980. Mechanisms of electron flow in photosystem II and toward photosystem I. Annual Rev. Pl. Physiol.31: 545–567.

    Article  CAS  Google Scholar 

  • Viil, J., A. Laisk andT. Pärnik. 1977. Enhancement of photosynthesis caused by oxygen under saturating irradiance and high CO2 concentrations. Photosynthetica11:251–259.

    CAS  Google Scholar 

  • von Caemmerer, S. 1981. On the relationship between chloroplast biochemistry and gas exchange of leaves. Ph.D. thesis. Aust. Nat. Univ. Canberra, Australia.

    Google Scholar 

  • — andG. D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta153: 376–387.

    Article  Google Scholar 

  • — andG. D. Farquhar. 1984a. Effects of partial defoliation, changes of irradiance during growth, short-term water stress and growth at enhanced p (CO2) on the photosynthetic capacity of leaves ofPhaseolus vulgaris L. Planta160: 320–329.

    Article  Google Scholar 

  • -and -. 1984b. Kinetics and activation of rubisco and some preliminary modeling of RuP2 pool sizes.In J. Viil and A. Laisk (eds.), Kinetics of C3 photosynthesis. Proc. 1983 Conf. Tallinn.

  • Walker, D. A. 1976. Photosynthetic induction and its relation to transport phenomena in chloroplasts. Pages 235–278in J. Barber (ed.), The intact chloroplast. ASP Biol. and Med. Press BV, Amsterdam.

    Google Scholar 

  • —. 1981. Secondary fluorescence kinetics of spinach in relation to the onset of photosynthetic carbon assimilation. Planta153: 273–278.

    Article  CAS  Google Scholar 

  • -and A. Herold. 1977. Can the chloroplast support photosynthesis unaided? Pl. Cell Physiol. (special issue): 1–7.

  • —,P. Horton, M. N. Sivak andW. P. Quick. 1983. Anti-parallel relationship between O2 evolution and slow fluorescence induction kinetics. Photobiochem. Photobiophys.5: 35–39.

    CAS  Google Scholar 

  • Wample, R. L. andR. W. Davis. 1983. Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annuus L.). Pl. Physiol.73: 195–198.

    CAS  Google Scholar 

  • Williams, W. T. 1948. The continuity of intercellular spaces in the leaf ofPelargonium zonale, and its bearing on recent stomatal investigations. Ann. Bot. NS12: 411–420.

    Google Scholar 

  • Wong, S. C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth I. Interactions of nitrogen and photosynthetic capacity in C3 and C4 plants. Oecologia44: 68–74.

    Article  Google Scholar 

  • Woo, K. C. andS. C. Wong. 1983. Inhibition of CO2 assimilation by supraoptimal CO2: Effect of light and temperature. Austral. J. Pl. Physiol.10: 75–85.

    Article  CAS  Google Scholar 

  • Woodrow, I. E. andD. A. Walker. 1983. Regulation of stromal sedoheptulose 1,7-bis-phosphatase activity and its role in controlling the reductive pentose phosphate pathway of photosynthesis. Biochim. Biophys. Acta722: 508–516.

    Article  CAS  Google Scholar 

  • Wylie, R. B. 1943. The role of the epidermis in foliar organization and its relation to the minor venation. Amer. J. Bot.30: 273–280.

    Article  Google Scholar 

  • —. 1952. The bundle sheath extension in leaves of dicotyledons. Amer. J. Bot.39: 645–651.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharkey, T.D. Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. Bot. Rev 51, 53–105 (1985). https://doi.org/10.1007/BF02861058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861058

Keywords

Navigation