Skip to main content
Log in

Mercury toxicity in plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Mercury poisoning has become a problem of current interest as a result of environmental pollution on a global scale. Natural emissions of mercury form two-thirds of the input; manmade releases form about one-third. Considerable amounts of mercury may be added to agricultural land with sludge, fertilizers, lime, and manures. The most important sources of contaminating agricultural soil have been the use of organic mercurials as a seed-coat dressing to prevent fungal diseases in seeds. In general, the effect of treatment on germination is favorable when recommended dosages are used. Injury to the seed increases in direct proportion to increasing rates of application. The availability of soil mercury to plants is low, and there is a tendency for mercury to accumulate in roots, indicating that the roots serve as a barrier to mercury uptake. Mercury concentration in aboveground parts of plants appears to depend largely on foliar uptake of Hg0 volatilized from the soil. Uptake of mercury has been found to be plant specific in bryophytes, lichens, wetland plants, woody plants, and crop plants. Factors affecting plant uptake include soil or sediment organic content, carbon exchange capacity, oxide and carbonate content, redox potential, formulation used, and total metal content. In general, mercury uptake in plants could be related to pollution level. With lower levels of mercury pollution, the amounts in crops are below the permissible levels. Aquatic plants have shown to be bioaccumulators of mercury. Mercury concentrations in the plants (stems and leaves) are always greater when the metal is introduced in organic form. In freshwater aquatic vascular plants, differences in uptake rate depend on the species of plant, seasonal growthrate changes, and the metal ion being absorbed. Some of the mercury emitted from the source into the atmosphere is absorbed by plant leaves and migrates to humus through fallen leaves. Mercury-vapor uptake by leaves of the C3 speciesoats, barley, and wheat is five times greater than that by leaves of the C4 species corn, sorghum, and crabgrass. Such differential uptake by C3 and C4 species is largely attributable to internal resistance to mercury-vapor binding. Airborne mercury thus seems to contribute significantly to the mercury content of crops and thereby to its intake by humans as food. Accumulation, toxicity response, and mercury distribution differ between plants exposed through shoots or through roots, even when internal mercury concentrations in the treated plants are similar. Throughfall and litterfall play a significant role in the cycling and deposition of mercury. The possible causal mechanisms of mercury toxicity are changes in the permeability of the cell membrane, reactions of sulphydryl (-SH) groups with cations, affinity for reacting with phosphate groups and active groups of ADP or ATP, and replacement of essential ions, mainly major cations. In general, inorganic forms are thought to be more available to plants than are organic ones.

Plants can be exposed to mercurials either by direct administration as antifungal agents, mainly to crop plants through seed treatment or foliar spray, or by accident. The end points screened are seed germination, seedling growth, relative growth of roots and shoots, and, in some case, studies of leaf-area index, internode development, and other anatomical characters. Accidental exposures occur through soil, water, and air pollution. The level of toxicity is usually tested under laboratory conditions using a wide range of concentrations and different periods of exposure. Additional parameters include biochemical assays and genetical studies. The absorption of organic and inorganic mercury from soil by plants is low, and there is a barrier to mercury translocation from plant roots to tops. Thus, large increases in mercury levels in soil produce only modest increases in mercury levels in plants by direct uptake from soil. Injuries to cereal seeds caused by organic mercurials has been characterized by abnormal germination and hypertrophy of the roots and coleoptile.

Mercury affects both light and dark reactions of photosynthesis. Substitution of the central atom of chlorophyll, magnesium, by mercury in vivo prevents photosynthetic light harvesting in the affected chlorophyll molecules, resulting in a breakdown of photosynthesis. The reaction varies with light intensity. A concentration and time-dependent protective effect of GSH seems to be mediated by the restricted uptake of the metal involving cytoplasmic protein synthesis. Plant cells contain aquaporins, proteins that facilitate the transport of water, in the vacuolar membrane (tonoplast) and the plasma membrane. Many aquaporins are mercury sensitive, and in AQP1 a mercury-sensitive cysteine residue (Cys-189) is present adjacent to a conserved Asn-Pro-Ala motif. At low concentrations mercury has a toxic effect on the degrading capabilities of microorganisms. Sensitivity to the metal can be enhanced by a reduction in pH, and tolerance of mercury by microorganisms has been found to be in the order: total population > nitrogen fixers > nitrifiers. Numerous experiments have been carried out to study the genetic effects of mercury compounds in experimental test systems using a variety of genetic endpoints. The most noticeable and consistent effect is the induction of c-mitosis through disturbance of the spindle activity, resulting in the formation of polyploid and aneuploid cells and c-tumors. Organomercurials have been reported to be 200 times more potent than inorganic mercury. Exposure to inorganic mercury reduces mitotic index in the root-tip cells and increases the frequency of chromosomal aberrations in degrees directly proportional to the concentrations used and to the duration of exposure. The period of recovery after removal of mercury is inversely related to the concentration and duration of exposure.

Bacterial plasmids encode resistance systems for toxic metal ions, including Hg2+, functioning by energy-dependent efflux of toxic ions through ATPases and chemiosmotic cationproton antiporters. The inducible mercury resistance (mer) operon encodes both a mercuric ion uptake and detoxification enzymes. In gram-negative bacteria a periplasmic protein,MerP, an inner-membrane transport protein,MerT, and a cytoplasmic enzyme, mercuric reductase, theMerA protein, are responsible for the transport of mercuric ions into cells and their reduction to elemental mercury, Hg(II). InThiobacillus ferrooxidans, an acidophilic chemoautotrophic bacterium sensitive to mercury ions, a group of mercury-resistant strains, which volatilize mercury, has been isolated. The entire coding sequence of the mercury-ion resistance gene has been located in a 2.3 kb fragment of chromosomal DNA (encoding 56,000 and 16,000 molecular-weight proteins) from strain E-l 5 ofEscherichia coli. Higher plants andSchizosaccharomyces pombe respond to heavy-metal stress of mercury by synthesizing phytochelatins (PCs) that act as chelators. The strength of Hg(II) binding to glutathione and phytochelatins follows the order: γGlu-Cys-Gly(γGlu-Cys)2Gly(γGlu-Cys)3Gly(γGlu-Cys)4Gly. Suspension cultures of haploid tobacco,Nicotiana tabacum, cells were subjected to ethyl methane sulfonate to raise mercury-tolerant plantlets. HgCl2-tolerant variants were selected from nitrosoguanidine (NTG)-treated suspension cell cultures of cow pea,Vigna unguiculata, initiated from hypocotyl callus and incubated with 18 ⧎g/ml HgCl2. Experiments have been carried out to develop mercury-tolerant plants ofHordeum vulgare through previous exposure to low doses of mercury and subsequent planting of the next generation in mercury-contaminated soil. Phytoremediation involves the use of plants to extract, detoxify, and/or sequester environmental pollutants from soil and water. Transgenic plants cleave mercury ions from methylmercury complexes, reduce mercury ions to the metallic form, take up metallic mercury through their roots, and evolve less toxic elemental mercury. Genetically engineered plants contain modified forms of bacterial genes that break down methyl mercury and reduce mercury ions. The first gene successfully inserted into plants wasmerA, which codes for a mercuric ion reductase enzyme, reducing ionic mercury to the less toxic elemental form.MerB codes for an organomercurial lyase protein that cleaves mercury ions from highly toxic methyl mercury compounds. Plants with themerB gene have been shown to detoxify methyl mercury in soil and water. Both genes have been successfully expressed inArabidopsis thaliana, Brassica (mustard),Nicotiana tabacum (tobacco), andLiriodendron tulipifera (tulip poplar). Plants currently being transformed include cattails, wild rice, andSpartina, another wetland plant. The problem of mercury contamination can be reduced appreciably by combining the standard methods of phytoremediation—removal of mercury from polluted areas through scavenger plants—with raising such plants both by routine mutagenesis and by genetic engineering. The different transgenics raised utilizing the two genesmerA andmerB are very hopeful prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adriano, D. C. 1986. Trace elements in the terrestrial environment. Springer-Verlag, New York.

    Google Scholar 

  • Ahmed, A. &H. A. Tajmir-Riahi. 1993. Interaction of toxic metal ions Cd2+, Hg2+, and Pb2+ with light harvesting proteins of chloroplast thylakoid membranes: An FTIR spectroscopic study. J. Inorg. Biochem. 50: 235–243.

    CAS  Google Scholar 

  • Ahmed, M. &W. F. Grant. 1972. Cytological effects of mercurial fungicide Panogen 15 onTradescantia andVicia faba root tip. Mutat. Res. 14: 391.

    CAS  Google Scholar 

  • Ahmed, R., S. D. Gupta &P. D. Ghosh. 1993. Selection of HgCl2-tolerant cell lines inVigna unguiculata L. after mutagen treatment. Indian J. Exp. Biol. 31: 816–818.

    CAS  Google Scholar 

  • Aioub, A. A. A., G. Gullner &T. Komives. 1993. Peroxidation of lipids in corn plants exposed to heavy metal and herbicide stress. Pp. 57–60in G. Mozsik, I. Etnerit, J. Feher, B. Matkovics & A. Vincze (eds.), Congress of oxygen free radicals and scavengers in the biological and medical sciences. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Al-Attar, A. F., M. H. Martin &G. Nickless. 1988. Uptake and toxicity of cadmium, mercury and thallium toLolium perenne seedlings. Chemosphere 17: 1219–1225.

    CAS  Google Scholar 

  • Albert, A. 1973. Selective toxicity: The physico-chemical basis of therapy. Ed. 5. Chapman & Hall, London.

    Google Scholar 

  • Alderdice, D. F. 1967. The detection and measurement of water pollution: Biological assays. Canadian Fisheries Report No. 9: 33–39. Canadian Department of Fisheries, Ottawa.

    Google Scholar 

  • Al-Helal, A. A. 1995. Effect of cadmium and mercury on seed germination and early seedling growth of rice and alfalfa. J. Univ. Kuwait, Sci. 22: 76–83.

    CAS  Google Scholar 

  • Ali, S. A. &R. P. Srivastava. 1995. A note on the effect of pre planting sett treatment with certain chemicals on germination, growth, yield and quality of sugarcane. Indian Sugar 45: 355–358.

    Google Scholar 

  • Amaregouda, A., M. B. Chetti, P. M. Salimath &M. V. C. Gowda. 1994. Influence of antitranspirants on osmoregulants in summer groundnut (Arachis hypogaea L.). Plant Physiol. 8: 114–120.

    Google Scholar 

  • Anderson, H. M. 1989. Effect of triadimenol seed dressing on vegetative growth in winter wheat. Crop Res. (Edinburgh) 29: 29–36.

    Google Scholar 

  • Andersson, A. 1979. Chapter 4. Pp. 79–112in J. O. Nriagu (ed.), The biogeochemistry of mercury in the environment. Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Anonymous. 1979. Effects on mercury in the Canadian environment. NRCC No 16739: 290. National Research Council, Ottawa.

  • Aoyagi, Y., A. Kasuga, H. Sasaki, M. Matuzawa, Y. Tsutagawa &H. Kawai. 1993. Chemical compositions of shiitake mushroom (Lentinus edodes (Berk.) Sing.) cultivated on logs and sawdust substrate beds and their relations to composition of the substrate. Nippon Shokuhin Kogyo Gakkaishi (J. Japan. Soc. Food Sci. & Techn.) 40: 771–775.

    CAS  Google Scholar 

  • Awad, F., L. Kahl, R. Kluge &J. Abadia. 1995. Environmental aspects of sewage sludge and evaluation of super absorbent hydrogel under Egyptian conditions. Sci. Total Environ. 126: 1–16.

    Google Scholar 

  • Baldi, F. 1988. Mercury pollution in the soil and mosses around a geothermal plant. Water Air Soil Pollut. 38: 111–119.

    CAS  Google Scholar 

  • Bargagli, R. &B. Markert. 1993. Plant leaves and lichens as biomonitors of natural and anthropogenic emissions of mercury. Pp. 461–484in B. Markert (ed.), Plants as biomonitors: Indicators for heavy metals in the terrestrial environment. VCH, Weinheim, Germany.

    Google Scholar 

  • Barghigiani, C. &T. Ristori. 1995. Preliminary study on mercury uptake byRosmarinus officinalis L. (rosemary) in a mining area (Mt. Amiata, Italy). Bull. Environ. Contamination Toxicol. 54: 519–525.

    CAS  Google Scholar 

  • Barkay, T. & R. Turner. 1992. Biological removal of Hg (II) from a contaminated freshwater pond. Abstr. Chem. Soc. Amer. 203 Meet. Pt. 1, GEOC 166.

  • Beijer, K. &A. Jernelöv. 1978. Sources, transport and transformation of metals in the environment. Pp. 3: 51–82in Toxicology of Metals. U.S. Environmental Protection Agency, Research Triangle Park, NC.

    Google Scholar 

  • Benada, J. 1992. The sensitivity of cereal varieties to seed dressing products. Pp. 125–131in Bericht uber die Arbeitstagung 1992 der “Arbeitsgemeinschaft der Saatzuchtleiter” im Rahmen der “Vereinigung osterreichischer Pflanzenzuchter,” Gumpenstein, Austria, 24–26 November.

  • Berlin, M. 1986. Mercury. Pp. 2: 387–435in L. Friberg, G. F. Nordberg & V. B. Vouk (eds.), Handbook on the toxicology of metals. Elsevier, Amsterdam.

    Google Scholar 

  • Bernier, M., R. Carpentier & N. Murata. 1992. Reversal of mercury inhibition in photosystem II by chloride. Pp. 2: 97–100in Photosynth. Res., Proceedings of the IXth International Congress on Photosynthesis, Nagoya, Japan, August 30–September 4, 1992.

  • —,R. Popovic &R. Carpentier. 1993. Mercury inhibition at the donor side of photosystem II is reversed by chloride. FEBS Letters 321: 19–23.

    PubMed  CAS  Google Scholar 

  • Bhale, V. M. &G. Hunsigi. 1994. Effect of growth regulators and cultural treatment on productivity of ratoon cane. Indian Sugar 44: 645–651.

    Google Scholar 

  • Bizily, S., C. L. Rugh, A. O. Summers &R. B. Meagher. 1999. Phytoremediation of methyl mercury pollution:merB expression inArabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. USA 96: 6808–6813.

    PubMed  CAS  Google Scholar 

  • Blaskova, E. 1994. Cadmium, lead and mercury in the soil and in potatoes under irrigated conditions. Vedecke Prace Vyskumneho Ustavu Zavlahoveho Hospodarstva v Bratislava 21: 127–138.

    Google Scholar 

  • Blomqvist, L. H. 1985. Influence on six-rowed barley by disinfection compounds: A comparison between mercury containing and mercury disinfectants [imazalil]. Meddelande fraan Statens Utsaedeskontroll 60: 62–69 (in Swedish).

    Google Scholar 

  • Bowen, H. J. M. 1979. Environmental chemistry of the elements. Academic Press, London.

    Google Scholar 

  • Brandi, G., G. F. Schiavano, A. Albano, F. Cattabeni &O. Cantoni. 1990. Growth delay and filamentation ofEscherichia coli wild-type andRecA cells in response to hexavalent chromium and other metal compounds. Mutation Res. 245: 201–204.

    PubMed  CAS  Google Scholar 

  • Brown, J. P., G. W. Roehm &R. J. Brown. 1978. Mutagenicity testing of certified food colors and related azo, xanthene and triphenylmethane dyes with the Salmonella/microsome system. Mutation Res. 56: 249–271.

    PubMed  CAS  Google Scholar 

  • Brown, N. L. (ed.). 1994. Genes and proteins for detecting heavy metals: From molecular biology to practical solutions?In Proceedings of Second International Symposium on Environmental Biotechnology. Institution of Chemical Engineers, Rugby, U.K.

    Google Scholar 

  • Browne, C. L. &S. L. Fang. 1983. Differential uptake of mercury vapour by graminaceous C3 and C4 plants. Plant Physiol. 72: 1040–1042.

    PubMed  CAS  Google Scholar 

  • Bruce, W. R. &J. Heddle. 1979. The mutagenic activity of 61 agents as determined by the micronuclues, Salmonella, and sperm abnormality assays. Canad. J. Genet. Cytol. 21: 319–334.

    PubMed  CAS  Google Scholar 

  • Burg, R. V. &M. R. Greenwood. 1991. Mercury. Pp. 1045–1088in E. Merian (ed.), Metals and their compounds in the environment. VCH, Weinheim, Germany.

    Google Scholar 

  • Cappon, C. J. 1987. Uptake and speciation of mercury and selenium in vegetable crops grown on compost-treated soil. Water Air Soil Pollut. 34: 353–362.

    CAS  Google Scholar 

  • Chakraborty, D. &A. K. Sinha. 1989. Differential effects of anionic forms of selected heavy metal salts in seed treatments onHelminthosporium infection of wheat seedlings. Indian Phytopathol. 42: 157–160.

    Google Scholar 

  • Chaney, R. L. &P. M. Giordano. 1977. Microelements as related to plant deficiencies and toxicities. Pp. 235–279in L. F. Elliot & F. J. Stevenson (eds.), Soils for the management of organic wastes and waste waters. American Society of Agronomy and Crop Sciences, Madison, WI.

    Google Scholar 

  • Clarkson, T. W. 1972. The pharmacology of mercury compounds. Ann. Rev. Pharmacol. 12: 375–406.

    PubMed  CAS  Google Scholar 

  • —. 1977. Mercury poisoning. Pp. 189–200in S. S. Brown (ed.), Clinical chemistry and chemical toxicology of metals. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Coquery, M. &P. M. Welbourn. 1994. Mercury uptake from contaminated water and sediment by the rooted and submerged aquatic macrophyteEriocaulon septangulare. Arch. Environ. Contam. Toxicol. 26: 335–341.

    CAS  Google Scholar 

  • Crosier, C. &G. W. Keitt. 1934. Abnormal germination in dusted wheat. Phytopathology 24: 544–547.

    Google Scholar 

  • Crowder, A. 1991. Acidification, metals and macrophytes. Environ. Pollut. 71: 171–203.

    PubMed  CAS  Google Scholar 

  • Czuba, M. 1987. Methyl mercury toxicity in plant cultures: Modification of resistance and demethylation by light and/or 2,4-dichlorophenoxyacetic acid. Ecotoxicol. Environ. Saf. 3: 191–201.

    Google Scholar 

  • —,R. W. Seagull, H. Tran &L. Cloutier. 1987. Effects of methyl mercury on arrays of microtubules and macromolecular synthesis inDaucus carota cultures. Ecotoxicol. Environ. Saf. 14: 64–72.

    PubMed  CAS  Google Scholar 

  • Dalai, T. &P. Bairagi. 1985. Effects of mercury, arsenic and lead on germination and seedling growth of jute varieties. Environ. Ecol. 3: 403–407.

    Google Scholar 

  • Daniels, M. J., T. E. Mirkov &M. J. Chrispeels. 1994. The plasma membrane ofArabidopsis thaliana contains a mercury insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol. 106: 1325–1333.

    PubMed  CAS  Google Scholar 

  • —,F. Chaumont, T. E. Mirkov &M. J. Chrispeels. 1996. Pl. Cell 8: 587–599.

    CAS  Google Scholar 

  • Davis, R. D. 1984. Crop uptake of metals (cadmium, lead, mercury, copper, nickel, zinc, and chromium) from sludge-treated soil and its implications for soil fertility and for the human diet. Pp. 349–357in P. L’Hermite (ed.), Processing and use of sewage sludge: Proceeding of the Third International Symposium, Brighton, September 27–30, 1983. D. Reidel Publishing, Dordrecht, Netherlands.

    Google Scholar 

  • De, A. K., A. K. Sen, D. P. Modakand &S. Jana. 1985. Studies of toxic effects of Hg (II) onPistia stratiotes. Water Air Soil Pollut. 24: 351–360.

    CAS  Google Scholar 

  • De Filippls, L. F. &H. Ziegler. 1993. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J. Pl. Physiol. 142: 167–172.

    Google Scholar 

  • —,R. Hampp &H. Ziegler. 1981. The effect of sublethal concentrations of zinc, cadmium and mercury on Euglena adenylates and energy charge. Z. Pflanzenphysiol. 103: 1–7.

    Google Scholar 

  • De Flora, S., C. Bennicelli &M. Bagnasco. 1994. Genotoxicity of mercury compounds. A review. Mutation Res. 317: 57–79.

    Google Scholar 

  • De Koe, T., J. Rozema, R. A. Broekmann, M. L. Otte &W. H. O. Ernst. 1988. Heavy metal levels in sediment and vegetation of the Aveiro Lagoon, Portugal. Pp. 671–674in M. Astruc & J. N. Lester (eds.), Heavy Met. Hydrol. Cycle. Selper Ltd., London.

    Google Scholar 

  • Delachiave, M. E. A., J. F. Pedras, J. D. Rodrigues, J. A. P. V. Moraes, S. D. Rodrigues, C. S. F. Boaro &M. A. Moraes. 1990. Seed germination ofStylosanthes guianensis, III: Fungicide concentration in relation to germination and cell size at different water potentials. Cientifica Jaboticabal. 18:27–34.

    Google Scholar 

  • Dembinska, M. W., E. Gudyka &W. Cisowski. 1994. The cadmium, lead and mercury content in some medicinal plants. Herba Polon. 40: 106–113.

    Google Scholar 

  • De Vries, M. P. C. &K. G. Tiller. 1978. Sewage sludge as a soil amendment with special reference to Cd, Cu, Mn, Ni, Pb and Zn: Comparison of results from experiments conducted inside and outside a glasshouse. Environ. Pollut. 16: 231–240.

    Google Scholar 

  • Dhakephalkar, P. K. &B. A. Chopade. 1994. High levels of multiple metal resistance and its correlation to antibiotic resistance in environmental isolates ofAcinetobacter. Biometals 7: 67–74.

    PubMed  CAS  Google Scholar 

  • D’Itri, P. A. &F. M. D’Itri. 1977. Mercury contamination: A human tragedy. John Wiley, London.

    Google Scholar 

  • Du, S. H. &S. C. Fang. 1983. Catalase activity of C3 and C4 species and its relationship to mercury vapor uptake. Environ. Exp. Bot. 23: 347–353.

    CAS  Google Scholar 

  • Durrant, M. J. &S. J. Mash. 1992. Sugarbeet treatments, water supply and depth of sowing. Ann. Appl. Biol. 120: 151–159.

    Google Scholar 

  • Dwivedi, S. K. 1991. Effect of some heavy metals on growth ofFusarium oxysporum f.sp.psidii causing guava wilt disease. Int. J. Trop. Pl. Dis. 9: 127–130.

    Google Scholar 

  • Ellen, G., J. W. van Loon &K. Tolsma. 1990. Heavy metals in vegetables grown in the Netherlands and in domestic and imported fruits. Zeitschrift fur Lebensmittel Untersuchung und Forschung 190: 34–39.

    PubMed  CAS  Google Scholar 

  • Fahmy, F. Y. 1951. Genetic effects of organomercurian compounds, I: Cytological investigation onAllium roots. Hereditas 61: 208–230.

    Google Scholar 

  • Fargasova, A. 1994. Effect of Pb, Cd, Hg, As, and Cr on germination and root growth ofSinapis alba seeds. Bull. Environ. Contamination Toxicol. 52: 452–456.

    CAS  Google Scholar 

  • Farler, E. 1952. The evolution of chemistry: A history of its ideas, methods, and materials. Ronald Press, New York.

    Google Scholar 

  • Feng, G. Y., J. Chang &J. P. Wu. 1993. Study on heavy metal pollution of vegetables in Boashen district, Shanghai. J. Shanghai Agric. Col. 11: 43–50.

    Google Scholar 

  • Ferrara, R., B. E. Maserti &P. Paterno. 1989. Mercury distribution in marine sediment and its correlation with thePosidonia oceanica Prairie in a coastal area by a chloralkali complex. Toxicol. Environ. Chem. 22: 131–134.

    CAS  Google Scholar 

  • Fimreite, N. 1970. Mercury uses in Canada and their possible hazards as sources of mercury contamination. Environ. Pollut. 1: 119–131.

    Google Scholar 

  • —,R. W. Fyfe &J. A. Keith. 1970. Mercury contamination of Canadian prairie seed eaters and their avian predators. Canad. Field-Naturalist 84: 269–276.

    Google Scholar 

  • Fiskesjö, G. 1969. Some results fromAllium test with organic mercury halogenides. Hereditas 62: 314–322.

    PubMed  Google Scholar 

  • —. 1988. TheAllium test: An alternative in environmental studies: The relative toxicity of metal ions. Mutation Res. 197: 243–60.

    PubMed  Google Scholar 

  • Folsom, B. L. Jr., C. R. Lee & D. J. Bates. 1981. Influence of disposal environment on availability and plant uptake of heavy metals in dredged material. Govt. Reports Announcements & Index (GRA&I), Issue 15.

  • Frank, R., K. Ishida &P. Suda. 1976a. Metals in agricultural soils of Ontario. Canad. J. Soil Sci. 56: 181–196.

    CAS  Google Scholar 

  • —,H. E. Braun, K. Ishida &P. Suda. 1976b. Persistent organic and inorganic pesticide residues in orchard soils and vineyards of southern Ontario. Canad. J. Soil Sci. 56: 463–484.

    CAS  Google Scholar 

  • Friberg, L. &J. Vostal (eds.). 1972. Mercury in the environment: An epidemiological and toxicological appraisal. CRC Press, Cleveland, OH.

    Google Scholar 

  • Fukunaga, M., Y. Kurachi, M. Ogawa, Y. Mizuguchi, Y. Kodama &S. Chihara. 1981. The genetic effect of environmental pollutants on eukaryotic cells: Mutagenicity on nuclear and mitochondrial genes of yeast by metals. J. UOEH 3: 245–254 (in Japanese).

    CAS  Google Scholar 

  • Gadallah, M. A. A. 1994. Interactive effect of heavy metals and temperature on the growth, and chlorophyll, saccharides and soluble nitrogen contents inPhaseolus plants. Biologia (Plantarum) 36: 373–382.

    CAS  Google Scholar 

  • Gaggi, C., G. Chemello &E. Bacci. 1991. Mercury vapor accumulation in azalea leaves. Chemosphere 22: 869–872.

    CAS  Google Scholar 

  • Ganeshan, R. &Manoharan. 1983. Effect of cadmium and mercury on germination, growth, and dry matter production ofAbelmoschus esculentus. Geobios 10: 9–12.

    Google Scholar 

  • Gebhard, A., A. G. Chetverikov, V. V. Gerasimenko &L. N. Tsoglin. 1990a. Effect of mercury ions on duckweed plants (Spirodela polyrhiza). Soviet Pl. Physiol. 37: 262–267.

    Google Scholar 

  • ————. 1990b. Effect of mercury ions on duckweed. Fiziol. Rast. (Moscow) 37: 349–55.

    CAS  Google Scholar 

  • Ghosh, S. 1995. Effect of seed dressing fungicides on nodulation of black gram (Vigna mungo), green gram (Vigna radiata) and ground nut (Arachis hypogea) in vivo. Environ. Ecol. 13: 369–371.

    CAS  Google Scholar 

  • Gilbert, H. 1990. Nutritive elements (N and P), heavy metals (Zn, Cu, Pb and Hg) and plant productivity in an intertidal freshwater marsh, Quebec (Quebec). Canad. J. Bot. 68: 857–863.

    CAS  Google Scholar 

  • Godbold, D. L. 1991. Mercury-induced root damage in spruce seedlings. Water Air Soil Pollut. 56: 823–831.

    CAS  Google Scholar 

  • — &A. Huettermann. 1985. Effect of zinc, cadmium and Hg on root elongation ofPicea abies (Karst.) seedlings and the significance of these metals to forest die-back. Environ. Pollut. 38: 375–381.

    CAS  Google Scholar 

  • Goldwater, L. J. 1971. Mercury in the environment. Sci. Amer. 224: 15–21.

    PubMed  CAS  Google Scholar 

  • Gotsis-Skretas, O. &U. Christaki. 1992. Physiological responses of two marine phytoplanktonic species to copper and mercury. Pp. 151–164in G. P. Gabrielides (ed.), Biological effects of pollutants on marine organisms: Proceedings of FAO/UNEP/IOC workshop on the biological effect of pollutants on marine organisms, 10–14 September 1991, Valletta, Malta. UNEP, Athens.

    Google Scholar 

  • Gracey, H. I. &J. B. W. Stewart. 1974. Canad. J. Soil Sci. 54: 105.

    CAS  Google Scholar 

  • Gross, R., J. Auslitz, P. Schramel &H. D. Payer. 1987. Concentrations of lead, cadmium, mercury and other elements in seeds ofLupinus mutabilis and of other legumes. J. Environ. Pathol. Toxicol. Oncol. 7: 59–65.

    PubMed  CAS  Google Scholar 

  • Gupta, M. &P. Chandra. 1996. Bioaccumulation and physiological changes inHydrilla verticillata (l.f.) royle in response to mercury. Bull. Environ. Contamination Toxicol. 56: 319–326.

    CAS  Google Scholar 

  • Gupta, M., R. D. Tripathi, U. N. Rai &P. Chandra. 1998. Role of glutathione and phytochelatin inHydrilla verticillata (L.f.) Royle andVallisneria spiralis L. under mercury stress. Chemosphere 37: 785–800.

    CAS  Google Scholar 

  • Gupta, R. 1991. Toxic effects of mercury on seed germination of bean and mustard. Comp. Physiol. Ecol. 16: 43–45.

    CAS  Google Scholar 

  • Hammer, U. T., A. T. Merkowsky &P. M. Huang. 1988. Effects of oxygen concentrations on release of mercury from sediments and accumulation byCeratophyllum demersum andAnodonta grandis. Arch. Environ. Contam. Toxicol. 17: 257–262.

    CAS  Google Scholar 

  • Hardstedt-Romeo, M. &M. Gnassia-Barelli. 1988. The effect of copper, cadmium and mercury on single-species and multispecies cultures of marine phytoplankton. Pp. 157–160in R. Delepine, J. Gaillard & P. Morand (eds.), Exploitation of algae and other aquatic plants, Colloquium, Bombannes, France, November 16–19, 1982. IFREMER, Plouzane, France.

    Google Scholar 

  • Hartung, R. &B. D. Dinman (eds.). 1972. Environmental mercury contamination. Ann Arbor Science Publishers, Ann Arbor, MI.

    Google Scholar 

  • Hashem, A. R. 1993. Mercury and the growth ofCladosporium herbarum. Cryptogam. Bot. 4: 23–25.

    Google Scholar 

  • Hejnowicz, Z. &A. Sievers. 1996. Reversible closure of water channels in parenchymatic cells of sunflower hypocotyl depends on turgor status of the cells. J. Pl. Physiol. 147: 516–520.

    CAS  Google Scholar 

  • Hermenegild, J. G. &H. O. Schwantes. 1983. The effects of cadmium, zinc, lead, and mercury on the growth and the accumulating ability ofSaccharomyces cerevisiae, Saccharomycopsis lipolytica, Candida tropicalis andCandida utilis. Zentralbl. Bakteriol. 177: 57–74.

    Google Scholar 

  • Heyland, K. U. &M. E. Meer. 1992. The significance of seed quality for wheat emergence, and compensatory effects of nutrient and other treatments on stress factors for seed and seedling. Bodenkultur 43: 39–53.

    Google Scholar 

  • Hiyama, T., M. Nishimura &B. Chance. 1970. Energy and electron transfer systems ofChlamydomonas reinhardi. Pl. Physiol. 46: 163–168.

    CAS  Google Scholar 

  • Hoiland K. 1995. Reaction of some decomposer basidiomycetes to toxic elements. Nord. J. Bot. 15: 305–318.

    CAS  Google Scholar 

  • Honeycutt, R. C. &D. W. Krogmann. 1972. Inhibition of chloroplast reactions with phenyl mercuric acetate. Pl. Physiol. 49: 376–380.

    CAS  Google Scholar 

  • Hsi, C. H. 1956. Toxicity of mercurial seed disinfectants to wheat. Pl. Dis. Reporter 40: 1065–1070.

    CAS  Google Scholar 

  • Hsu, F. H. 1993. Studies on seed germination ofMiscanthus species. Special Publ. Taichung Distr. Agric. Improv. Stat. 30: 205–217.

    Google Scholar 

  • — &C. H. Chou. 1992. Inhibitory effects of heavy metals on seed germination and seedling growth ofMiscanthus species. Bot. Bull. Acad. Sin. 33: 335–342.

    CAS  Google Scholar 

  • Hunter, D. 1978. The diseases of occupations. Ed. 6. Hodder and Stoughten, London.

    Google Scholar 

  • Hussain, M. S. &K. Jamil. 1990. Bioaccumulation of mercury and its effect on protein metabolism of the water hyacinth weevilNeochetina eichhorniae. Bull. Environ. Contamination Toxicol. 45: 294–298.

    CAS  Google Scholar 

  • Hyll, A. &O. Nestroy. 1993. Effects of different doses of sewage sludge on soil and plants of a cultivated and a grassland site in the lower valley of the river Murz. Bodenkultur 44: 379–388.

    Google Scholar 

  • Hynninen, V. &M. Lodenius. 1986. Mercury pollution near an industrial source in southwest Finland. Bull. Environ. Contamination Toxicol. 36: 294–298.

    CAS  Google Scholar 

  • Inoue, C., K. Sugawara, T. Shiratori, T. Kusano &Y. Kitagawa. 1989. Nucleotide sequence of theThiobacillus ferrooxidans chromosomal gene encoding mercuric reductase. Gene 84: 47–54.

    PubMed  CAS  Google Scholar 

  • —,T. Kusano &S. Silver. 1996. Mercuric ion uptake byEscherichia coli cells producingThiobacillus ferrooxidans MerC. Biosci. Biotechnol. Biochem. 60: 1289–1292.

    PubMed  CAS  Google Scholar 

  • Iqbal, J. &K. A. Majeed. 1991. Effect of mercury on germination, early seedling growth and soluble protein content in wheat (Triticum aestivum L. CV. Pak-81). Sci. Int. (Pakistan) 3: 233–235.

    CAS  Google Scholar 

  • Iverfeldt, A. 1991. Mercury in forest canopy throughfall water and its relation to atmospheric deposition. Water Air Soil Pollut. 56: 553–564.

    CAS  Google Scholar 

  • Jain, M. &R. M. Puranik. 1993. Protective effect of reduced glutathione on inhibition of chlorophyll biosynthesis by mercury in excised greening maize leaf segments. Indian J. Exp. Biol. 31: 708–710.

    CAS  Google Scholar 

  • James, R., K. Sampath, V. J. Pattu &G. Devakiamma. 1992. Utilization ofEichhornia crassipes for the reduction of mercury toxicity on food transformation inHeteropneustes fossilis. J. Aquacult. Trop. 7: 189–196.

    Google Scholar 

  • Jana, S. 1988. Accumulation of mercury and chromium by three aquatic species and subsequent changes in several physiological and biochemical plant parameters. Water Air Soil Pollut. 38: 105–109.

    CAS  Google Scholar 

  • — &A. Bhattacharjee. 1988. Effects of combinations of heavy metal pollutants onCuscuta reflexa. Water Air Soil Pollut. 42: 303–310.

    CAS  Google Scholar 

  • John, M. K., C. J. van Laerhoven &C. H. Cross. 1975. Cadmium, lead, and zinc accumulation in soils near a smelter complex. Environ. Lett. 10: 25–35.

    PubMed  CAS  Google Scholar 

  • Johnels, A., G. Tyler &T. Westermark. 1979. A history of mercury levels in Swedish fauna. Ambio 8: 160–168.

    CAS  Google Scholar 

  • Kabata-Pendias, A. &H. Pendias. 1984. Trace elements in the soils and plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Kahle, H. 1993. Response of roots of trees to heavy metals. Environ. Exp. Bot. 33: 99–119.

    Google Scholar 

  • Kaiser, G. &G. Tölg. 1980.In O. Hutzinger (ed.), The handbook of environmental chemistry, Vol 3, Part A. Springer-Verlag, Berlin.

    Google Scholar 

  • Kala, R., V. K. Gupta &S. P. Gupta. 1992. Effect of heavy metal application to Ustipsamment on growth of some pulse crops. Ann. Arid Zone 31: 233–234.

    Google Scholar 

  • Kalimuthu, K. &R. Sivasubramanian. 1990. Physiological effects of heavy metals onZea mays (maize) seedlings. Indian J. Pl. Physiol. 33: 242–244.

    CAS  Google Scholar 

  • Kanematsu, N., M. Hara &T. Kada. 1980.Rec assay and mutagenicity studies on metal compounds. Mutation Res. 77: 109–116.

    PubMed  CAS  Google Scholar 

  • Kang, I. K., S. G. Suh &J. K. Byun. 1994. Characterization and antibody production of b-galactosidase in persimmon fruits. J. Korean Soc. Hort. Sci. 35: 226–232.

    CAS  Google Scholar 

  • Kaohler, B. &W. M. Beaver. 1954. Oat and wheat seed treatments: Methods, injuries, and gains. Pl. Dis. Reporter 38: 762–768.

    Google Scholar 

  • Kaore, S. V., B. G. Bathkal &R. M. Deshpande. 1993. Effect of antitranspirants and nitrogen levels on growth and yield of sorghum grown under medium deep soil. PKV Res. J. 17: 138–141.

    Google Scholar 

  • Karlberg, S. 1976. The phytotoxic effects of some disinfectants (mercury and non-mercury compounds on barley, oats, rye, wheat). Meddeland. Statens Centrala Froekontrollanstalt, Solna 51: 43–51 (in Swedish).

    Google Scholar 

  • Katz, S. &V. Santilli. 1962. The reversible reaction of tobacco mosaic virus ribonucleic acid and mercuric chloride. Biochem. Biophys. Acta 55: 621–626.

    PubMed  CAS  Google Scholar 

  • Kawade, Y. 1963. The interaction of mercuric chloride with ribonucleic acids and polyribonucleotides. Biochem. Biophys. Res. Commun. 10: 204–208.

    CAS  Google Scholar 

  • Kazantzis, G. 1980. Mercury. Pp. 221–261in H. A. Waldron (ed.), Metals in the environment. Academic Press, London.

    Google Scholar 

  • Kesavan A. &Purushothaman. 1991. Developing heavy metal tolerant strains ofRhizobium. Natl. Acad. Sci. Lett. 14: 165–167.

    CAS  Google Scholar 

  • Khanianapai, L., D. Suchin &C. Termsak. 1984. Concentration of heavy metals in the seaweeds of Thailand. Pp. 2-1–2-26in Proceedings of the 22nd National Conference of Kasetsart University: Environmental Science Section, 30 January–2 February, 1984, Bangkok, Thailand. Kasetsart University of Bangkok, Thailand, Ministry of Agriculture and Cooperatives, Bangkok, Thailand and National Research Council, Bangkok (in Thai).

    Google Scholar 

  • Kim, Y. H., H. J. Shon, J. H. Do &S. K. Lee. 1992. Screening of natural materials on detoxification of mercury chloride by usingFusarium oxysporum. Korean J. Pl. Pathol. 8: 112–118.

    Google Scholar 

  • Kneer, R. &M. H. Zenk. 1992. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31: 2663–2667.

    CAS  Google Scholar 

  • Koio, M. R. &M. Lodenius. 1989. Cadmium and mercury in macrofungi: Mechanisms of transport and accumulation. Angewandte Botanik 63: 279–292.

    Google Scholar 

  • Komives, T., A. A. A. Aioub, G. Gullner &C. Brunold. 1994. Effects of mercuric chloride on the glutathione transferase enzyme activity in corn (Zea mays L.) plants. Cereal Res. Communications 22: 99–104.

    CAS  Google Scholar 

  • Koo, F. K. S. 1982. Induction of mutations with EMS for resistance to heavy metals in cultured haploid cells ofNicotiana tabacum. Pl. Tissue Cult. 5 Meet. 487–88.

  • Korringa, P. & P. Hagel. 1974. Proceedings, International Symposia on Problems of Contamination of Man and His Environment by Mercury and Cadmium, Luxembourg, 3–5 July, 1973. C.E.C., Luxembourg.

  • Koski, E., M. Venalainen &P. Nuorteva. 1988. The influence of forest type, topographic location and season on the levels of aluminum, iron, zinc, cadmium and mercury in some plants in southern Finland. Ann. Bot. Fenn. 25: 365–370.

    CAS  Google Scholar 

  • Kostoff, D. 1939. Effect of the fungicide ‘Granosan’ on atypical growth and chromosome doubling in plants. Nature 144: 334.

    Google Scholar 

  • —. 1940. Atypical growth, abnormal mitosis and polyploidy induced by ethyl mercury chloride. J. Phytopathol. 2: 91–96.

    Google Scholar 

  • Kotov, V. S. 1983. Uptake and excretion of mercury by seedlings of woody plants. Introd. Aklim. Rosl. Ukr. 23: 25–28.

    Google Scholar 

  • Krishnan, S. S., A. Cancilla &R. E. Jervis. 1988. Waste water treatment for heavy metal toxins using plant and hair as adsorbents. Sci. Total Environ. 68: 267–273.

    PubMed  CAS  Google Scholar 

  • Krupa, Z. &T. Baszynski. 1995. Some aspects of heavy metals toxicity towards photosynthetic apparatus: Direct and indirect effects on light and dark reactions. Acta Physiol. Pl. 17: 177–190.

    CAS  Google Scholar 

  • Kulikova, I. R. 1987. Individual and collective effect of heavy metals on the pigment composition of algae in a controlled environmentin situ. Eksp. Vodn. Toksikol. 12: 52–67.

    CAS  Google Scholar 

  • Kumar, S. &D. Banerjee. 1992. Effect of some heavy metals onin vitro activities of certain enzymes. Pl. Physiol. Biochem. 19: 33–35.

    Google Scholar 

  • Kupper, H., F. Kupper &M. Spiller. 1996. Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J. Exp. Bot. 47: 259–266.

    Google Scholar 

  • Kytomaa, A., S. Nieminen, P. Thuneberg, H. Haapala &P. Nuorteva. 1995. Accumulation of aluminum inHypogymnia physodes in the surroundings of a Finnish sulphite cellulose factory. Water Air Soil Pollut. 81:401–409.

    CAS  Google Scholar 

  • Lackovicova, A., E. Martiny, I. Pisut &V. Stresko. 1994. Element content of the lichenHypogymnia physodes and spruce needles in the industrial area of Rudnany and Krompachy (NE Slovakia). Ekol. Bratislava 13: 415–423.

    Google Scholar 

  • Lag, J. &E. Steinnes. 1978. Acta Agric. Scand. 28: 393.

    Google Scholar 

  • Lee, C. H. H. Chang, S. B. Ha, B. Y. Moon, C. B. Lee & N. Murata. 1992. Mercury induced light dependent alterations of chlorophyll fluorescence kinetics in barley leaf slices. Pp. 4: 623–626in Photosynth. Res., Proceedings of the IXth International Congress on Photosynthesis, Nagoya, Japan, August 30–September4, 1992.

  • Lenka, M., K. K. Panda &B. B. Panda. 1990. Studies on the ability of water hyacinth (Eichornia crassipes) to bioconcentrate and biomonitor aquatic mercury. Environ. Pollut. 66: 89–99.

    PubMed  CAS  Google Scholar 

  • ———. 1992. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant, IV: Bioconcentration of mercuryin situ aquatic and terrestrial plants at Ganjam, India. Arch. Environ. Contam. Toxicol. 22: 195–202.

    PubMed  CAS  Google Scholar 

  • —,B. L. Das, K. K. Panda &B. B. Panda. 1993. Mercury tolerance ofChloris barbata Sw. andCyperus rotundus L. isolated from contaminated sites. Biol. Pl. 35: 443–446.

    CAS  Google Scholar 

  • Li, C. P. 1948. The chemical arts of Old China. J. Chem. Edu. 49–50.

  • Lin, H. T., S. S. Wong &G. C. Li. 1992. The concentrations of heavy metals in crops of Taiwan and the daily intake of heavy metals by people of Taiwan. Zhongguo Nongye Huaxue Huizhi 30: 463–470.

    CAS  Google Scholar 

  • Lindberg, S. E., D. R. Jackson, J. W. Huckabee, S. A. Janzen, M. J. Levin &J. R. Lund. 1979. J. Environ. Qual. 8: 572.

    CAS  Google Scholar 

  • Linster, M. 1991. The impact of sewage sludge on agriculture. Pp. 320–336in M. D. Young (ed.), Towards sustainable agricultural development. Belhaven Press, London.

    Google Scholar 

  • Liu, D., W. Jiang, W. Wang &L. Zhai. 1995. Evaluation of metal ion toxicity on root tip cells by theAllium test. Israel J. Pl. Sci. 43: 125–133.

    CAS  Google Scholar 

  • Lodenius, M. 1981. Regional distribution of mercury inHypogymnia physodes in Finland. Ambio 10: 183–184.

    CAS  Google Scholar 

  • — &M. Malm. 1990. Influence of acidification on metal uptake in plants. Pp. 495–504in P. Kauppi, P. Anttile & K. Kenttamies (eds.), Acidification in Finland. Springer-Verlag, New York.

    Google Scholar 

  • Lucena, J. J., L. E. Hernandez, S. Olmos, &R. O. Carpena-Ruiz. 1993. Micronutrient content in graminaceous and leguminous plants contaminated with mercury. Pp. 531–537in M. A. C. Fragoso, M. L. van Beusichem & A. Houwers (eds.), Optimization of plant nutrition. Eighth International Colloquium for the Optimization of Plant Nutrition, 31 August–8 September 1992, Lisbon, Portugal. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Lyngby, J. E. &H. Brix. 1982. The uptake of heavy metals in eelgrassZostera marina and their effect on growth (inc. chromium). Pp. 81–89in L. Rasmussen (ed.), Ecotoxicology: Proceedings of Third Oikos Conference, 30th November–2nd December, 1982, Copenhagen, Denmark. Forskningsraadets Foerlagstiaenst, Stockholm.

    Google Scholar 

  • MacFarlane, E. W. E. 1956. Cytological conditions in root tip meristem after gross antagonism of phenylmercuric poisoning. Exp. Cell Res. 5: 375–385.

    Google Scholar 

  • — &A. M. Messing. 1953. Shoot chimeras after exposure to mercurial compounds. Bot. Gaz. 115: 66–76.

    CAS  Google Scholar 

  • Maclean, A. J., B. Store &W. B. Cordukes. 1973. Amounts of mercury in soil of some golf course sites. Canad. J. Soil Sci. 53: 130–132.

    CAS  Google Scholar 

  • Mahajan, A. &S. Dua. 1993. Some characteristics of Indian rapeseed acid phosphatase. Pl. Physiol. Biochem. 20: 86–89.

    Google Scholar 

  • Maitani, T., H. Kubota, K. Saio &T. Yamada. 1996. The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures ofRubia tinctorum. Pl. Physiol. 110: 1145–1150.

    CAS  Google Scholar 

  • Maliwal, P. L., I. N. Gupta &S. S. Rathore. 1993. Response of barley (Hordeum vulgare) to different fertility levels and phenyl mercuric acetate under tank bed condition. Indian J. Agric. Sci. 63: 589–590.

    CAS  Google Scholar 

  • Mankovska, B. 1996. Mercury concentrations in forest trees from Slovakia. Water Air Soil Pollut. 89: 267–275.

    CAS  Google Scholar 

  • Maroti, M. &J. Bognar. 1989. Effect of heavy metals inhibiting the growth of plant callus tissues (III). Acta Bot. Hung. 35: 185–198.

    CAS  Google Scholar 

  • Martinelli, L. A., J. R. Ferreira, B. R. Forsberg &R. L. Victoria. 1988. Mercury contamination in the Amazon: A gold rush consequence. Ambio 17: 252–254.

    CAS  Google Scholar 

  • Mathews, S. L., I. R. McCracken &G. Lonergan. 1995. Mercury contamination of golf courses due to pesticide use. Bull. Environ. Contamination Toxicol. 55: 390–397.

    Google Scholar 

  • Maury, A. N., R. K. Gupta &A. K. Gupta. 1986. Effect of heavy metal pollutants on seed germination of four pasture plants of Uttar Pradesh (India). Indian J. Environ. Health 29: 134–139.

    CAS  Google Scholar 

  • Maury-Brachet, R., F. Ribeyre &A. Boudou. 1990. Actions and interactions of temperature and photoperiod on mercury accumulation byElodea densa from sediment source. Ecotoxicol. Environ. Saf. 20: 141–155.

    PubMed  CAS  Google Scholar 

  • Meagher, R. B. &C. L. Rugh. 1997. Phytoremediation of heavy metal pollution: Ionic and methyl mercury. Pp. 305–321in Organization for Economic Cooperation and Development (OECD) Document: Biotechnology for Water Use and Conservation, The Mexico ’96 Workshop. OECD, Paris.

    Google Scholar 

  • Mehra, R. K., J. Miclat, V. R. Kodati, R. Abdullah, T. C. Hunter &P. Mulchandani. 1996. Optial spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins. Biochem. J. 314: 73–82.

    PubMed  CAS  Google Scholar 

  • Merian, E. (ed.). 1991. Metals and their compounds in the environment: Occurrence, analysis and biological relevance. VCH, Weinheim, Germany.

    Google Scholar 

  • Mhatre, G. N. &S. B. Chaphekar. 1984. Response of young plants to mercury. Water Air Soil Pollut. 21: 1–8.

    CAS  Google Scholar 

  • ——. 1985. The effect of mercury on some aquatic plants. Environ. Pollut. 39: 207–216.

    CAS  Google Scholar 

  • Miller, M. W. &T. W. Clarkson (eds.). 1973. Mercury, mercurials and mercaptans. C. C. Thomas, Springfield, IL.

    Google Scholar 

  • Mishra, B. B., D. R. Nanda &B. N. Mishra. 1987. Accumulation of mercury by Azolla and its effect on growth. Bull. Environ. Contamination Toxicol. 39: 701–707.

    CAS  Google Scholar 

  • Mohapatra, A., P. K. Das &A. K. Panigrahi. 1990. Effect of mercury contained in solid waste on the pigment content of a mulberry plant. J. Environ. Biol. 11: 355–363.

    CAS  Google Scholar 

  • Moreshet, S. 1975. Effects of phenyl mercuric acetate on stomatal and cuticular resistance to transpiration. New Phytol. 75: 47–52.

    CAS  Google Scholar 

  • Mortimer, D. C. 1985. Freshwater aquatic macrophytes as heavy metal monitors: The Ottawa River experience. Environ. Monit. Assess. 5: 311–323.

    CAS  Google Scholar 

  • Mosbaek, H., J. C. Tjell &T. Sevel. 1988. Plant uptake of airborne mercury in background areas. Chemosphere 17: 1227–1236.

    CAS  Google Scholar 

  • Mosso, H. J. 1979. Phytotoxicity test of mercury phenyl acetate in wheat seeds (Triticum aestivum). Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires.

    Google Scholar 

  • Mou, S. S. &C. L. Qing. 1995. Mercury pollution of soil crop system in acid precipitation area. Pedosphere 5: 283–288.

    CAS  Google Scholar 

  • Muhaya, B. B. M., C. R. Joiris, M. Bossicart, M. Leermakers, L. Deronde &W. Baeyens. 1993. Total mercury and methyl mercury in soil, litter and plants from the Zonien (Soignes) forest near Brussels (Belgium). Pp. 247–264in J. J. Symoens, P. Devos, J. Rammeloo & C. Verstraeten (eds.), Biological indicators of global change: Proceedings, Symposium, Brussels, 7–9 May 1992. Académie royale des sciences d’outre-mer, Brussels.

    Google Scholar 

  • Murthy, S. D. S. &P. Mohanty. 1991. Mercury induces alteration of energy transfer in phycobilisome by selectively affecting the pigment protein, phycocyanin, in the cyanobacterium,Spirulina platensis. Pl. Cell Physiol. 32: 231–238.

    CAS  Google Scholar 

  • ——. 1995. Action of selected heavy metal ions on the photosystem 2 activity of the cyanobacteriumSpirulina platensis. Biologia Plantarum 37: 79–84.

    CAS  Google Scholar 

  • Nag, P., A. K. Paul &S. Mukherji. 1989. The effects of heavy metals, zinc and mercury, on the growth and biochemical constituents of mung bean (Vigna radiata) seedlings. Bot. Bull. Acad. Sin. 30: 241–250.

    CAS  Google Scholar 

  • Nahar, S. &H. A. Tajmir-Riahi. 1995. Do metal ions alter the protein secondary structure of a lightharvesting complex of thylakoid membranes? J. Inorg. Biochem. 58: 223–234.

    CAS  Google Scholar 

  • Nath, S., J. Chaudhuri, K. Pahan &A. Mandal. 1993. Mercury and organomercurial resistance in rhizobial strains. Indian J. Exp. Biol. 31: 50–53.

    CAS  Google Scholar 

  • Nedelcu, L., A. A. Alexandri, N. Goga, F. Vilau, C. Alistar &A. Lupas. 1992. Some new aspects regarding resistance of the common smut to ethylmercury chloride. Analele Inst. Cercetari pentru Protectia Plantelor, Acad. Stiinte Agricole si Silvice 24: 179–184.

    Google Scholar 

  • Nogueira, R. S. P., J. C. D. A. R. Dias &E. Hofer. 1993.Salmonella serotypes from effluent sewage waters: Levels of resistance to heavy metals, and markers transfer. Revista de Microbiol. 24: 9–15.

    CAS  Google Scholar 

  • Noll, W. 1938. Deformities induced in wheat seeds by treatments of the grain. Arch. Fitotec, Uruguay 3: 86–95.

    CAS  Google Scholar 

  • Nordberg, G. F. (ed.). 1976. Effects and dose-response relationships of toxic metals: Proceedings from an international meeting organized by the Subcommittee on the Toxicology of Metals of the Permanent Commission and International Association on Occupational Health, Tokyo, 1974. Elsevier, Amsterdam.

    Google Scholar 

  • NRC [U.S. National Research Council, Panel on Mercury]. 1978. Assessment of mercury in the environment: A report. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Ochiai, E.-I. 1987. General principles of biochemistry of the elements. Plenum Press, New York.

    Google Scholar 

  • O’Neill, P. 1985. Environmental chemistry. Chapman and Hall, London.

    Google Scholar 

  • Ortiz, D. F. 1994. An MDR-like vacuolar transport protein implicated in heavy metal tolerance. Fedrip Database, National Technical Information Service (NTIS).

  • Page, A. L. 1974. Fate and effects of trace elements in sewage sludge when applied to agricultural lands: A literature review study. Pub. EPA-670-74-005. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, National Environmental Research Center, Cincinnati, OH.

    Google Scholar 

  • — &A. C. Chang. 1978. Pp. 91–96in Proceedings of 5th National Conference on Acceptable Sludge Disposal Techniques. Information Transfer, Rockville, MD.

    Google Scholar 

  • Pahan, K., S. Ray, R. Gachhui, J. Chaudhuri &A. Mandal. 1993. Stimulatory effect of phenylmercuric acetate and benzene on the growth of a broad spectrum mercury-resistant strain ofBacillus pasteurii. J. Appl. Bacteriol. 74: 248–252.

    CAS  Google Scholar 

  • Panda, K. K., B. L. Das, M. Lenka &B. B. Panda. 1988. Water hyacinth (Eichhornia crassipes) to biomonitor genotoxicity of low levels of mercury in aquatic environment. Mutation Res. 206: 275–279.

    PubMed  CAS  Google Scholar 

  • —,M. Lenka &B. B. Panda. 1989.Allium micronucleus (MNC) assay to assess bioavailability, bioconcentration and genotoxicity of mercury from solid waste deposits of a chloralkali plant, and antagonism of L cysteine. Sci. Total Environ. 79: 25–36.

    PubMed  CAS  Google Scholar 

  • Pandey, M. &H. S. Srivastava. 1993. Inhibition of nitrate reductase activity and nitrate accumulation by mercury in maize leaf segments. Indian J. Environ. Health 35: 110–114.

    Google Scholar 

  • Pandey, P. K. &S. P. Singh. 1993. Hg2+ uptake in a cyanobacterium. Curr. Microbiol. 26: 155–159.

    CAS  Google Scholar 

  • Patra, R. R. &A. K. Panigrahi. 1994. Changes in residual mercury accumulation and pigment contents in some aquatic plants,Pistia andHydrilla, exposed to solid waste of a chlor alkali industry. J. Environ. Biol. 15: 299–306.

    CAS  Google Scholar 

  • Paul, M. C. &R. R. Mishra. 1994. Seed germination and seedling vigour of maize (Zea mays L.) as influenced by different fungicides. Crop Res. (Hisar) 7: 454–460.

    Google Scholar 

  • Peshney, N. L., Z. A. Khan &N. R. Holey. 1994. The effect of fungicides on colonization of rhizosphere fungi, growth and yield of sugarcane. Indian Sugar 44: 31–34.

    Google Scholar 

  • Phipps, J. &D. R. Miller. 1982. Quelques aspects de la toxicité génétique du méthylmercure chez les levures. C. R. Acad. Sci. Paris 295: 683–686 (in French).

    CAS  Google Scholar 

  • ——. 1983. Toxicité génétique du chlorure de methylmercure (CH3HgCl) sur les mitochondries deSaccharomyces cerevisiae. Canad. J. Microbiol. 29: 1149–1153.

    CAS  Google Scholar 

  • Phytoworks. 1997. ttp://www.phytoworks.com/index.shtml.

  • Pilet, P. E. &J. M. Versel. 1981. Effect of mercury on growth and gravireaction of maize roots (Zea mays). Z. Pflanzenphysiol. 104: 193–198.

    CAS  Google Scholar 

  • Prasad, D. D. K. 1990. Porphyrin metabolism in lead and mercury treated bajra (Pennisetum typhoideum) seedlings. J. Biosciences 15: 271–279.

    CAS  Google Scholar 

  • Purdy, L. H. 1956. The nature and extent of mercury injury and associated anatomical responses in wheat seedlings. Rev. Appl. Mycol. 36: 391.

    Google Scholar 

  • Purkayastha, R. P., A. K. Mitra &B. Bhattacharyya. 1994. Uptake and toxicological effects of some heavy metals onPleurotus sajor caju (Fr.) Singer. Ecotoxicol. Environ. Saf. 27: 7–13.

    CAS  Google Scholar 

  • Rai, L. C., A. K. Singh &N. Mallick. 1991. Studies on photosynthesis, the associated electron transport system and some physiological variables ofChlorella vulgaris under heavy metal stress. J. Pl. Physiol. 137: 419–424.

    CAS  Google Scholar 

  • Ramel, C. 1969. Genetic effects of organomercurian compounds, I: Cytological investigation onAllium roots. Hereditas 61: 208–230.

    PubMed  CAS  Google Scholar 

  • —. 1972. Genetic effects. Pp. 169–181in L. Friberg & J. Vostal (eds.), Mercury in the environment: An epidemiological and toxicological appraisal. CRC Press, Cleveland, OH.

    Google Scholar 

  • Rani, S. M. V., K. Muthuchelian &K. Pliwal. 1988. Effect of short term exposure of heavy metals onin vivo nitrate reductase (EC. 1.6.6.1) activity ofEchinochloa colona Link. Indian J. Range Management 9: 119–123.

    Google Scholar 

  • Rao, M. V. &P. S. Dubey. 1992. Occurrence of heavy metals in air and their accumulation by tropical plants growing around an industrial area. Sci. Total Environ. 126: 1–16.

    CAS  Google Scholar 

  • Rasmussen, P. E., G. Mierle &J. O. Nriagu. 1991. The analysis of vegetation for total mercury. Water Air Soil Pollut. 56: 379–390

    CAS  Google Scholar 

  • —,D. Porcella, J. W. Huckabee &B. Wheatley. 1995. Temporal variation of mercury in vegetation. Water Air Soil Pollut. 80: 1039–1042.

    CAS  Google Scholar 

  • Rea, A. W., G. J. Keeler &T. Scherbatskoy. 1996. The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed: A short-term study. Atmos. Environ. 30: 3257–3263.

    CAS  Google Scholar 

  • Ribeyre, F. &A. Boudou. 1994. Experimental study of inorganic and methylmercury bioaccumulation by four species of freshwater rooted macrophytes from water and sediment contamination sources. Ecotoxicol. Environ. Saf. 28: 270–286.

    PubMed  CAS  Google Scholar 

  • Robichaud, K., M. Misra, R. W. Smith, I. A. H. Schneider, Y. K. Kharaka &O. V. Chudaev. 1995. Adsorption of heavy metals by aquatic plant roots. Pp. 269–272in Y. K. Kharaka (ed.), Water-rock interaction: Proceedings of the 8th International Symposium on Water-Rock Interaction, Vladivostok, Russia, 15–19 August, 1995. Balkema, Rotterdam, Netherlands.

    Google Scholar 

  • Rochelle, P. A., &B. H. Olson. 1992. Bacterial detoxification of mercury in sediment microcosms. Pp. 149–152in R. Casper and J. Landsmann (eds.), Biosafety results of field tests of genetically modified plants and microorganisms: Proceedings of the Second International Symposium, Goslar, Germany. Biologische Bundesanstalt fur Land und Forstwirtschaft, Braunschweig, Germany.

    Google Scholar 

  • Ross, S. M. 1994. Toxic metals in soil-plant systems. John Wiley, Chichester, England.

    Google Scholar 

  • Rouch, D. A. &J. Parkhill. 1994. Unpublished data. Pp. 1–3in L. N. Brown (ed.), Genes and proteins for detecting heavy metals: From molecular biology to practical solutions? Proceedings of the Second International Symposium on Environmental Biotechnology. Institution of Chemical Engineers, Rugby, U.K.

    Google Scholar 

  • Ruales, J. &B. M. Nair. 1993. Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa Willd) seeds. Food Chem. 48: 131–136.

    CAS  Google Scholar 

  • Rugh, C. L., S. A. Merkle &R. B. Meagher. 1996a. Toxic mercury reduction and remediation using a modified bacterial gene in transgenic plants. Hort. Sci. 31: 699.

    Google Scholar 

  • —,H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers &R. B. Meagher. 1996b. Mercuric ion reduction and resistance in transgenicArabidopsis thaliana plants expressing a modified bacterialmerA gene. Proc. Natl. Acad. Sci. USA 93: 3182–3187.

    PubMed  CAS  Google Scholar 

  • ——,S. A. Meride &R. B. Meagher. 1996c. Modification of a bacterial mercuric-reductase gene sequence for stable expression in transgenic plants. In Vitro 32: 70A.

    Google Scholar 

  • —,J. F. Senecoff, R. B. Meagher &S. A. Merkle. 1998. Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotech. 16: 925–928.

    CAS  Google Scholar 

  • Samecka, C. A. &A. J. Kempers. 1996. Bioaccumulation of heavy metals by aquatic macrophytes around Wroclaw, Poland. Ecotoxicol. Environ. Saf. 35: 242–247.

    Google Scholar 

  • Sass, J. E. 1937. Histological and cytological studies of ethyl mercury phosphate poisoning in corn seedlings. Phytopathology 27: 95–99.

    CAS  Google Scholar 

  • Sawidis, T. &H. D. Reiss. 1995. Effects of heavy metals on pollen tube growth and ultrastructure. Protoplasmatologia 185: 113–122.

    CAS  Google Scholar 

  • Sebuktekin, I., N. Singhal & D. Roy. 1987. Effects of mercury on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by two newPseudomonas isolates. Abstract ENVR273, Paper American Chemical Society, 194 Meeting.

  • Semu, E., B. R. Singh, A. R. Seltner Olsen &K. Steenberg. 1985. Uptake of mercury from mercury-203-labeled mercury compounds by wheat and beans grown on an oxisol. Pl. & Soil 87: 347–355.

    CAS  Google Scholar 

  • Semy, E., D. Guttormsen &L. Bakken. 1989. Microbial populations and activity in two soils of Tanzania as influenced by mercury. World J. Microbiol. & Biotechnol. 5: 533–542.

    Google Scholar 

  • Sen, A. K. &N. G. Mondal. 1987.Salvinia natans as the scavenger of mercury (II). Water Air Soil Pollut. 34: 439–446.

    CAS  Google Scholar 

  • Setia, R. C., B. Rajna &R. Bala. 1994. Anatomical changes in root and stem of wheat (Triticum aestivum L.) in response to different heavy metals. Phytomorphology 44: 95–104.

    Google Scholar 

  • Sexton, W. A. 1963. Chemical constitution and biological activity. Ed. 3, rev. Van Nostrand, Princeton, NJ.

    Google Scholar 

  • Shariatpanahi, M. &A. C. Anderson. 1986. Accumulation of cadmium, mercury and lead by vegetables following long-term land application of wastewater. Sci. Total Environ. 52: 41–47.

    PubMed  CAS  Google Scholar 

  • Sharma, R. C. &H. L. Sharma. 1993. Emisan-phytotoxicity to rain-damaged paddy seed. Pl. Dis. Res. 8: 126–128.

    Google Scholar 

  • Shaw, B. P. &A. K. Panigrahi. 1986. Uptake and tissue distribution of mercury in some plant species collected from a contaminated area in India: Its ecological importance. Arch. Environ. Contam. Toxicol. 15: 439–466.

    CAS  Google Scholar 

  • Sheppard, S. G., W. G. Evenden, S. A. Abboud &M. A. Stephenson. 1993. Plant life cycle bioassay for contaminated soil, with comparison to other bioassays: Mercury and zinc. Arch. Environ. Contam. Toxicol. 25: 27–35.

    CAS  Google Scholar 

  • Shimizu, T., M. Maeda &T. Nakamura. 1975. Effect of lead and mercury on the rice plant and some vegetables. Bull. Osaka Agric. Res. Center 12: 117–129.

    CAS  Google Scholar 

  • Shiratori, T., C. Inoue, K. Sugawara, T. Kusano &Y. Kitagawa. 1989. Cloning and expression ofThiobacillus ferrooxidans mercury ion resistance genes inEscherichia coli. J. Bacteriol. 171: 3458–3464.

    PubMed  CAS  Google Scholar 

  • Siegel, B. Z., M. Lasconia, E. Yaeger &S. M. Siegel. 1984. The phytotoxicity of mercury vapour. Water Air Soil Pollut. 23: 15–24.

    CAS  Google Scholar 

  • Siegel, S. M., B. Z. Siegel, C. Barghigiani, K. Aratani, P. Penny &D. Penny. 1987. A contribution to the environmental biology of mercury accumulation in plants. Water Air Soil Pollut. 33: 65–72.

    CAS  Google Scholar 

  • Siegenthaler, A. F. &W. Stauffer. 1991. Long term excessive slurry and sewage sludge application: Environmental effects and measures. Pp. 234–241in J. Hall (ed.), Recent developments in animal waste utilization: Proceedings of the Consultation of the European Cooperative Research Network on Animal Waste Utilization, Bologna, Italy, 25–28 September 1990. REUR Technical Series, No. 17. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Siegenthaler, P. &L. Packer. 1965. Light dependent volume changes and reactions in chloroplasts: Action of alkenyl succinic acid and phenyl mercuric acetate and possible relation to mechanisms of stomatal control. Pl. Physiol. 40: 785–791.

    CAS  Google Scholar 

  • Silver, S. 1984. Bacterial transformations of and resistance of heavy metals. Pp. 199–223in J. O. Nriagu (ed.), Changing metal cycles and human health. Springer-Verlag, Berlin.

    Google Scholar 

  • —. 1996. Bacterial resistances to toxic metal ions: A review. Gene 179: 9–19.

    PubMed  CAS  Google Scholar 

  • — &L. T. Phung. 1996. Bacterial heavy metal resistance: New surprises. Ann. Rev. Microbiol. 50: 753–789.

    CAS  Google Scholar 

  • Simpson, R. 1964. Association constants of methyl mercury and mercuric ions with nucleotides. J. Amer. Chem. Soc. 86: 2059–2065.

    CAS  Google Scholar 

  • Singh, A. K. &L. C. Rai. 1991. Cr and Hg toxicity assessed in situ using the structural and functional characteristics of algal communities. Environ. Toxicol. Water Qual. 6: 97–107.

    CAS  Google Scholar 

  • Singh, B. P., S. K. Saxena &B. B. Nagaich. 1989. Chemical control of dry rot of potatoes caused byFusarium spp. Indian J. Pl. Protect. 17: 91–95.

    CAS  Google Scholar 

  • — &D. C. Ghosh. 1991. Effect of cultural factors on leaf area index, light interception ratio and grain yield of wheat. Indian Agriculturist 35: 9–13.

    Google Scholar 

  • Singh, B. R. &A. S. Jeng. 1993. Uptake of zinc, cadmium, mercury, lead, chromium and nickel by ryegrass grown in a sandy soil. Norwegian J. Agric. Sci. 7: 147–157.

    Google Scholar 

  • Singh, C. B. &S. P. Singh. 1992. Assessment of Hg2+ toxicity to a N2 fixing cyanobacterium in long and short term experiments. Biometals 5: 149–156.

    CAS  Google Scholar 

  • Singh, N., M. S. Kang &N. Singh. 1992. Effect of seed treatment on seed rot, germination and seedling mortality on rice. Seed Res. 20: 56–57.

    Google Scholar 

  • Singh, O. &B. S. Bains. 1992. Evaluation of Bagalol & Surootex for cane germination. Cooperative Sugar 23: 545–548.

    Google Scholar 

  • Sinha, S., M. Gupta &P. Chandra. 1996. Bioaccumulation and biochemical effects of mercury in the plantBacopa monnieri (L). Environ. Toxicol. Water Qual. 11: 105–112.

    CAS  Google Scholar 

  • Smit, E., A. Wolters &J. D. van Elsas. 1998. Self-transmissible mercury resistance plasmids with gene-mobilizing capacity in soil bacterial populations: Influence of wheat roots and mercury addition. Appl. Environ. Microbiol. 64: 1210–1219.

    PubMed  CAS  Google Scholar 

  • Sock, J., R. Rohringer &Z. Kang. 1990. Extracellular b-1, 3-glucanases in stem rust affected and abiotically stressed wheat leaves: Immunocytochemical localization of the enzyme and detection of multiple forms in gels by activity staining with dye-labeled laminarin. Pl. Physiol. 94: 1376–1389.

    CAS  Google Scholar 

  • Spitel, T. W. &S. M. Siegel. 1975. Auxin- and carbon dioxide-sensitive effects of mercury and iodine vapors in plant senescence. Pl. Cell Physiol. 16: 383–386.

    Google Scholar 

  • Sridhar, M. K. C. 1988. Uptake of trace elements by water lettuce (Pistia stratiotes). Acta Hydrochim. Hydrobiol. 16: 293–297.

    CAS  Google Scholar 

  • Srikumar, T. S. 1993. The mineral and trace element composition of vegetables, pulses and cereals of southern India. Food Chem. 46: 163–167.

    CAS  Google Scholar 

  • Staiger, K. 1983. On the evaluation of mercury uptake by the plant shoot (oats, lettuces) (Zur Bewertung der Quecksilberaufnahme ueber den Pflanzenspross). Arch. Acker Pflanzenbau Bodenkunde (German D.R.) 27: 279–286.

    CAS  Google Scholar 

  • Subhadra, A. V., A. K. Nanda, P. K. Behera &B. B. Panda. 1991. Acceleration of catalase and peroxidase activities inLemna minor L. andAllium cepa L. in response to low levels of aquatic mercury. Environ. Pollut. 69: 169–180.

    PubMed  CAS  Google Scholar 

  • —,K. K. Panda &B. B. Panda. 1993. Residual mercury in seed of barley (Hordeum vulgare L.) confers genotoxic adaptation to ethyl methanesulfonate, maleic hydrazide, methyl mercuric chloride and mercury contaminated soil. Mutation Res. 300: 141–149.

    PubMed  CAS  Google Scholar 

  • Summers, A. O. 1985. Bacterial resistance to toxic elements. Trends Biotechnol. 3: 122–25.

    CAS  Google Scholar 

  • Surdel, M. 1991. The content of mercury compounds in selected soft fruits derived from southeastern Poland. Roczn. Gleboznawcze 42: 237–240.

    CAS  Google Scholar 

  • Suszcynsky, E. M. &J. R. Shann. 1995. Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environ. Toxicol. Chem. 14: 61–67.

    CAS  Google Scholar 

  • Swedish Expert Group. 1971. Norw. Hyg. Tidschr. Suppl. 4.

  • Szymczak, J. &H. Grajeta. 1992. Mercury contents in soil and plant material. Polish J. Food Nutr. Sci. 1:31–39.

    CAS  Google Scholar 

  • Tabbada, R. A., P. E. Florendo &A. E. Santiago. 1989. Uptake and some physiological effects of mercury on water hyacinth,Eichhornia crassipes (Mart.) Solms. Biotropia 3: 83–91.

    Google Scholar 

  • Taisaev, T. T. 1991. Industrial flow of gold and mercury scattering in barren-taiga regions. Dokl. Akad. Nauk SSSR 317: 719–722.

    CAS  Google Scholar 

  • Tamura, R., N. Fukuzaki, Y. Hirano &Y. Mizushima. 1985. Evaluation of mercury contamination using plant leaves and humus as indicators. Chemosphere 14:11–12, 1687–1693.

    Google Scholar 

  • Tao, Y., A. Howlett &C. Klein. 1992. Nitric oxide stimulates the ADP-ribosylation of a 41kDa cytosolic protein inDictyostelium discoideum. Proc. Natl. Acad. Sci. USA 89: 5902–5906.

    PubMed  CAS  Google Scholar 

  • Tejning, S. 1967. Mercury in pheasant (Phasianus colchicus L.) deriving from seed grain dressed with methyl and ethyl mercury compounds. Oikos 18: 334–344.

    Google Scholar 

  • Thalouarn, P. 1976. Stimulated seed germination ofPinus halepensis Mill. by successive applications of mercury and chloride ions: Search for a mechanism. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Serie D 282: 1857–1860 (in French).

    CAS  Google Scholar 

  • Tikku, S., R. S. Sindhu &R. K. Bhartiya. 1990. The removal of lead (II), cadmium (II) and mercury (II) from water byIxora coccinea Linn. plant substrate. Indian J. For. 13: 112–114.

    CAS  Google Scholar 

  • Tu, S. I., M. T. Loper, D. Brauer &A. F. Hsu. 1992. The nature of proton translocating ATPases in maize roots. J. Pl. Nutr. 15: 929–944.

    CAS  Google Scholar 

  • USEPA [U.S. Environmental Protection Agency]. 1984. Health effects assessment of mercury. Environmental Criteria and Assessment Office, Cincinnati, OH.

    Google Scholar 

  • Varshney, A. K. 1990. Differential response ofPhaseolus aureus cultivars to mercury pretreatment on mobilization of N and protease activity during germination and seedling growth. Geobios 17: 82–87.

    CAS  Google Scholar 

  • —. 1991. Effect of mercuric acetate on mobilization of nitrogen and phosphorus during seedling growth ofOryza sativa cvs. IR36 and Saket 4. J. Indian Bot. Soc. 70: 99–102.

    CAS  Google Scholar 

  • Veiga, L. A. &M. F. Guimaraes. 1991. L-Fuconate dehydratase: Purification and properties of the enzyme fromPullularia pullulans. Arq. Biol. e Tecnologia 34: 537–553.

    CAS  Google Scholar 

  • Vijay, S., S. Kant & S. P. Bohra. 1988. Ecophysiological studies on Indian desert plants, II: Physiological response to heavy metals inSorghum vulgare Pers. Trans. Indian Soc. Desert Technol. 59–67.

  • Vyas, J. &R. M. Puranik. 1993. Inhibition of nitrate reductase activity by mercury in bean leaf segments. Indian J. Plant Physiol. 36: 57–59.

    CAS  Google Scholar 

  • Wagner, J. C. &D. H. Wolf. 1992. Purification and characterization of proteinase yscJ, a new yeast peptidase. Eur. J. Biochem. 203: 571–575.

    PubMed  CAS  Google Scholar 

  • Walsh, C. T. 1994. Enzymatic reaction mechanisms. Crisp Data Base, U.S. National Institutes of Health.

  • Wang, J., L. Rao &Y. Zhong. 1985. Geochemical background value of mercury in 100 species of tropical plants in Hainan Island [China]. Kexue Tongbao (foreign language edition) 30: 90–92.

    CAS  Google Scholar 

  • Wang, H. K., B. Y. Liv, G. Z. Feng &Q. M. Wang. 1982. A study of the permissible level of mercury due to the utilization of sludge on land. Acta Agric. Univ. Pekinensis 8: 69–75.

    Google Scholar 

  • Warman, P. R., T. Muizelaar &W. C. Termeer. 1995. Bioavailability of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn from biosolids amended compost. Compost Sci. Util. 3: 40–50.

    Google Scholar 

  • Weaver, R. W., J. R. Melton, D. S. Wang &R. L. Duble. 1984. Uptake of arsenic and mercury from soil by Bermuda grassCynadon dactylon. Environ. Pollut. 33: 133–142.

    CAS  Google Scholar 

  • Webb, J. 1966. Enzyme and metabolic inhibitors. Vol. 2. Academic Press, New York.

    Google Scholar 

  • Weston, W. A. R. &J. R. Booer. 1935. Seed disinfection: An outline of an investigation of disinfectantdust containing mercury. J. Agric. Sci. 25: 628–649.

    CAS  Google Scholar 

  • WHO [World Health Organization]. 1976. Mercury. Pp. 1–31in Environmental Health Criteria 1. World Health Organization, Geneva.

    Google Scholar 

  • Wild, A. (ed.). 1988. Russell’s soil conditions and plant growth. Ed. 11. John Wiley, New York.

    Google Scholar 

  • Wilde, H. D., N. M. Stack, L. V. Azarraga &R. B. Meagher. 1994. Reduction of ionic mercury by transgenic plants. In Vitro 30A, Pt. 2: 60.

    Google Scholar 

  • Wyttenbach, A., L. Tobler &S. Bajo. 1989. Na, Cl and Br in needles of Norway spruce and in the aerosol adhering to the needles. Toxicol. Environ. Chem. 18: 249–256.

    Google Scholar 

  • Xu, Y. J. &R. B. Van-Huystee. 1993. Effect of calcium, its inhibitors, and heavy metals on the growth cycle of peanut cell aggregates. Pl. Cell Tissue Org. Cult. 32: 319–328.

    CAS  Google Scholar 

  • Xuexun, Z. &G. Linhai. 1991. Studies on the heavy metals pollution of soil and plants in Tianjin wastewater irrigated area. Ekologia 10: 87–97.

    Google Scholar 

  • Yatscoff, R. W. &J. E. Cummins. 1975. DNA breakage caused by dimethyl mercury and its repair in a slime mould,Physarum polycephalum. Nature 257: 422–423.

    PubMed  CAS  Google Scholar 

  • Zapater, I. G., A. H. J. Ullah &R. J. Wodzinski. 1990. Extracellular a-galactosidase (E.C.3.2.1.22) fromAspergillus ficuum NRRL 3135 purification and characterization. Preparative Biochem. 20: 263–296.

    CAS  Google Scholar 

  • Zawadzka, T., H. Mazur, M. Wojciechowska-Mazurek, K. Starska, E. Brulinska-Ostrowska, K. Cwiek, R. Uminska &A. Bichniewicz. 1990. Content of metals in vegetables from various regions of Poland in the years 1986–1988, I: Content of lead, cadmium and mercury. Roczn. Panstw Zakl Hig 41: 111–131 (in Polish).

    CAS  Google Scholar 

  • Zhang, G. &C. Lin. 1992. Effects of soil mercury and organic matters on the development and yield of summer millet. J. Hebei Agric. Univ. (China) 15: 23–27.

    Google Scholar 

  • Zhang, L., J. L. Qian &D. Planas. 1995. Mercury concentration in tree rings of black spruce (Picea mariana Mill. B.S.P.) in boreal Quebec, Canada. Water Air Soil Pollut. 81: 163–173.

    Google Scholar 

  • Zhang, Z., Q. Lu &F. Fang. 1989. Effect of mercury on the growth and physiological function of wheat seedlings. Huanjing Kexue 10: 10–13.

    Google Scholar 

  • Zhou, Z. L. &H. R. Zhao. 1992. Methods for growing unpolluted vegetables in the Xian suburbs. J. Agric. Sci. (Shaanxi) 1: 20–22.

    Google Scholar 

  • Zhu, L. &W. R. Cullen. 1994. Effects of mercury (II) species on cell suspension cultures ofCatharanthus roseus. Bull. Environ. Contamination Toxicol. 53: 779–786.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, M., Sharma, A. Mercury toxicity in plants. Bot. Rev 66, 379–422 (2000). https://doi.org/10.1007/BF02868923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02868923

Keywords

Navigation