Skip to main content
Log in

Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

In this paper a numerical model for the analysis of coupled thermomechanical multi-body frictional contact problems at finite deformations is presented. The multi-body frictional contact formulation is fully developed on the continuum setting and then a spatial (Galerkin projection) and temporal (time-stepping algorithm) discretization is applied. A contact pressure and temperature dependent thermal contact model has been used. A fractional step method arising from an operator split of the governing equations has been used to solve the coupled nonlinear system of equations, leading to a staggered solution algorithm.

The numerical model has been implemented into an enhanced version of the computational finite element program FEAP. Numerical examples and simulation of industrial metal forming processes show the performance of the numerical model in the analysis of coupled thermomechanical frictional contact problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agelet de Saracibar, C. (1995a) “A New Frictional Time Integration Algorithm for Multi-Body Large Slip Frictional Contact Problems”,Computer Methods in Applied Mechanics and Engineering,142, 303–334.

    Article  MathSciNet  Google Scholar 

  • Agelet de Saracibar, C. (1995b), “Numerical Analysis of Frictional Contact Problems”,Lecture notes of Short Course on Computational Techniques for Plasticity. International Center for Numerical Methods in Engineering, Barcelona, Spain.

    Google Scholar 

  • Agelet de Saracibar, C. & M. Chiumenti (1995), “Numerical Analysis of Frictional Wear Contact Problems. Computational Model and Applications”, to be published inComputer Methods in Applied Mechanics and Engineering.

  • Armero, F. & J.C. Simo (1992a), “A new Unconditionally Stable Fractional Step Method for Nonlinear Coupled Thermomechanical Problems”,International Journal for Numerical Methods in Engineering,35, 737–766.

    Article  MATH  MathSciNet  Google Scholar 

  • Armero F. & J.C. Simo (1992b), “Product Formula Algorithms for Nonlinear Coupled Thermoplasticity: Formulation and Nonlinear Stability Analysis”,Division of Applied Mechanics, Department of Mechanical Engineering, Stanford University, Stanford, California, SUDAM Report no. 92-4, March 1992.

  • Armero F. & J.C. Simo (1993), “A Priori Stability Estimates and Unconditionally Stable Product Algorithms for Nonlinear Coupled Thermoplasticity”,International Journal of Plasticity 9, 749–782.

    Article  MATH  Google Scholar 

  • Bathe, K.-J. & A. Chaudhary (1985), “A Solution Method for Planar and Axisymmetric Contact Problems”,International Journal for Numerical Methods in Engineering,21, 65–88.

    Article  MATH  Google Scholar 

  • Belytschko, T. & M.O. Neal (1991), “Contact-Impact by the Pinball Algorithm with Penalty and Lagrangian Methods”,International Journal for Numerical Methods in Engineering,31(3), 547–572.

    Article  MATH  Google Scholar 

  • Benson, D.J. & J.O. Hallquist (1990), “A Single Surface Contact Algorithm for the Post-Buckling Analysis of Shell Structures”,Computer Methods in Applied Mechanics and Engineering,78, 141–163.

    Article  MATH  MathSciNet  Google Scholar 

  • Campos, L.T., J.T. Oden & N. Kikuchi (1982), “A Numerical Analysis of a Class of Contact Problems with Friction in Elastostatics”,Computer Methods in Applied Mechanics and Engineering,34, 821–845.

    Article  MATH  MathSciNet  Google Scholar 

  • Carpenter, N.J., R.L. Taylor & M.G. Katona (1991), “Lagrange Constraints for Transient Finite Element Surface Contact”,International Journal for Numerical Methods in Engineering,32, 103–128.

    Article  MATH  Google Scholar 

  • Cheng, J.-H. & N. Kikuchi (1985), “An Analysis of Metal Forming Processes Using Large Deformation Elastic-Plastic Formulations”,Computer Methods in Applied Mechanics and Engineering,49, 71–108.

    Article  MATH  Google Scholar 

  • Ciarlet, P.G. (1988),Mathematical Elasticity. Volume 1: Three-Dimensional Elasticity, North-Holland, Amsterdam.

    Google Scholar 

  • Curnier, A. (1984), “A theory of friction”,International Journal of Solids and Structures,20, 637–647.

    Article  MATH  Google Scholar 

  • Curnier, A. & P. Alart (1988), “A Generalized Newton Method for Contact Problems with Friction”,Journal de Mecanique Theorique et Appliquee, supplement no. 1 to7, 67–82.

    MathSciNet  Google Scholar 

  • Duvaut, G. & J.L. Lions (1972).Les Inequations en Mecanique et en Physique. Dunod, Paris.

    MATH  Google Scholar 

  • Gallego, F.J. & J.J. Anza (1989), “A Mixed Finite Element Model for the Elastic Contact Problem”,International Journal for Numerical Methods in Engineering,28, 1249–1264.

    Article  MATH  Google Scholar 

  • Giannakopoulos, A.E. (1989), “The Return Mapping Method for the Integration of Friction Constitutive Relations”,Computers and Structures,32, 157–167.

    Article  MATH  Google Scholar 

  • Hallquist, J.O., G.L. Goudreau & D.J. Benson (1985), “Sliding Interfaces with Contact-Impact in Large-Scale Lagrangian Computations”,Computer Methods in Applied Mechanics and Engineering,51, 107–137.

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, T.J.R. (1987),The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  • Ju, J.-W. & R.L. Taylor (1988), “A Perturbed Lagrangian Formulation for the Finite Element Solution of Nonlinear Frictional Contact Problems”,Journal de Mecanique Theorique et Appliquee, supplement no. 1 to volume7, 1–14.

    Google Scholar 

  • Ju, J.-W., R.L. Taylor & L.Y. Cheng (1987), “A Consistent Finite Element Formulation of Nonlinear Frictional Contact Problems”,Proceedings of the International Conference NUMETA'87, J. Middleton & G.N. Pande, eds., Nijhoff, Dordrecht.

    Google Scholar 

  • Kikuchi, N. & J.T. Oden (1988),Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia.

    MATH  Google Scholar 

  • Klarbring, A. & G. Björkman (1992), “Solution of Large Displacement Contact Problems with Friction Using Newton's Method for Generalized Equations”,International Journal for Numerical Methods in Engineering,34, 249–269.

    Article  MATH  MathSciNet  Google Scholar 

  • Laursen, T.A. (1992), “Formulation and Treatment of Frictional Contact Problems Using Finite Elements”,Ph.D. Dissertation, Stanford University, Division of Applied Mechanics, Report no. 92-6.

  • Laursen, T.A. & S. Govindjee (1994), “A Note on the Treatment of Frictionless Contact Between Nonsmooth Surfaces in Fully Non-linear Problems”,Communications in Applied Numerical Methods,10, 869–878

    Article  MATH  MathSciNet  Google Scholar 

  • Laursen, T.A. & J.C. Simo (1991), “On the Formulation and Numerical Treatment of Finite Deformation Frictional Contact Problems”, inNonlinear Computational Mechanics-State of the Art, P. Wriggers & W. Wagner, eds., Springer-Verlag, Berlin, pp. 716–736.

    Google Scholar 

  • Laursen, T.A. & J.C. Simo (1992), “Formulation and Regularization of Frictional Contact Problems for Lagrangian Finite Element Computations”, inProc. of The Third International Conference on Computational Plasticity: Fundamentals and Applications, COMPLAS III, D.R.J. Owen, E. Oñate & E. Hinton, eds., Pineridge Press, Swansca, pp. 395–407.

    Google Scholar 

  • Laursen, T.A. & J.C. Simo (1993a), “A Continuum-Based Finite Element Formulation for the Implicit Solution of Multi-Body, Large Deformation Frictional Contact Problems”,International Journal for Numerical Methods in Engineering,36(20), 3451–3485.

    Article  MATH  MathSciNet  Google Scholar 

  • Laursen, T.A. & J.C. Simo (1993b), “Algorithmic Symmetrization of Coulomb Frictional Problems Using Augmented Lagrangians”,Computer Methods in Applied Mechanics and Engineering,108, 133–146.

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, E.H. (1969), “Elastic-plastic Deformation at Finite Strains”,Journal of Applied Mechanics,36, 1–6.

    MATH  Google Scholar 

  • Lee, E.H. & D.T. Lin (1967), “Finite Strain Elastic-Plastic Theory Particularly for Plane Wave Analysis”,Journal of Applied Physics,38.

  • Luenberger, D.G. (1984),Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  • Mandel, J. (1974), “Thermodynamics and Plasticity”, inFoundations of Continuum Thermodynamics, J.J. Delgado et al. eds., McMillan, London, 283–304.

    Google Scholar 

  • Marsden, J.E. & T.J.R. Hughes (1983),Mathematical Foundations of Elasticity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Moran, B., M. Ortiz & C.F. Shih (1990), “Formulation of Implicit Finite Element Methods for Multiplicative Deformation Plasticity”,International Journal for Numerical Methods in Engineering,29, 483–514.

    Article  MATH  MathSciNet  Google Scholar 

  • Oden, J.T. & J.A.C. Martins (1985), “Models and Computational Methods for Dynamic Friction Phenomena”,Computer Methods in Applied Mechanics and Engineering,52, 527–634.

    Article  MATH  MathSciNet  Google Scholar 

  • Oden, J.T. & E.B. Pires (1984), “Algorithms and Numerical Results for Finite Element Approximations of Contact Problems with Non-Classical Friction Laws”,Computer and Structures,19, 137–147.

    Article  Google Scholar 

  • Owen, D.R.J., D. Perić, A.J.L. Crook, E.A. de Souza Neto, J. Yu & M. Dutko (1995), “Advanced Computational Strategies for 3D Large Scale Metal Forming Simulations”,Proceedings of the Fifth International Conference on Numerical Methods in Industrial Forming Processes, to appear

  • Papadopoulos, P. & R.L. Taylor (1990), “A Mixed Formulation for the Finite Element Solution of Contact Problems”,UCB/SEMM Report, 90/18, University of California at Berkeley.

  • Parisch, H. (1989), “A Consistent Tangent Stiffness Matrix for Three-Dimensional Non-Linear Contact Analysis”,International Journal for Numerical Methods in Engineering,28, 1803–1812.

    Article  MATH  Google Scholar 

  • Shai, I. & M. Santo (1982), “Heat transfer with contact resistance”,International Journal of Heat and Mass Transfer,24, 465–470.

    Article  Google Scholar 

  • Simo, J.C. (1988), “A Framework for Finite Strain Elastoplasticity Based on the Multiplicative Decomposition and Hyperelastic Relations. Part II: Computational Aspects”,Computer Methods in Applied Mechanics and Engineering,68, 1–31.

    Article  MATH  Google Scholar 

  • Simo, J.C. (1992), “Algorithms for Static and Dynamic Multiplicative Plasticity that Preserve the Classical Return Mapping Schemes of the Infinitesimal Theory”,Computer Methods in Applied Mechanics and Engineering,99, 61–112.

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.C. (1994), “Numerical Analysis Aspects of Plasticity”, inHandbook of Numerical Analysis, Volume IV, P.G. Ciarlet and J.J. Lions, eds., Nort-Holland.

  • Simo, J.C. & F. Armero (1991), “Recent Advances in the Formulation and Numerical Analysis of Thermoplasticity at Finite Strains”, inFinite Inelastic Deformations— Theory and Applications, E. Stein and D. Besdo, eds., IUTAM/IACM Symposium, Hannover, FRG, August, 19–23, 1991 Springer-Verlag, Berlin, 1991.

    Google Scholar 

  • Simo J.C. & F. Armero (1992), “Geometrically Nonlinear Enhanced Strain Mixed Methods and the Method of Incompatible Modes”,International Journal for Numerical Methods in Engineering,33, 1413–1449.

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.C., F. Armero & R.L. Taylor (1993), “Improved Versions of Assumed Enhanced Strain Tri-Linear Elements for 3D Finite Deformation Problems”,Computer Methods in Applied Mechanics and Engineering.

  • Simo, J.C. & T.J.R. Hughes (1994), “Elastoplasticity and Viscoplasticity: Computational Aspects”, to be published by Springer-Verlag, Berlin.

    Google Scholar 

  • Simo, J.C. & T.A. Laursen (1992), “An Augmented Lagrangian Treatment of Contact Problems Involving Friction”,Computers and Structures,42, 97–116.

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J.C. & C. Miche (1992), “Associative Coupled Thermoplasticity at Finite Strains: Formulation, Numerical Analysis and Implementation”,Computer Methods in Applied Mechanics and Engineering,98, 41–104.

    Article  MATH  Google Scholar 

  • Simo, J.C., P. Wriggers, K. Schweizerhof & R.L. Taylor (1986), “Finite Deformation Postbuckling Analysis Involving Inelasticity and Contact Constraints”,International Journal for Numerical Methods in Engineering,23, 779–800.

    Article  MATH  Google Scholar 

  • Simo, J.C., P. Wriggers & R.L. Taylor (1985), “A Perturbed Lagrangian Formulation for the Finite Element Solution of Contact Problems”,Computer Methods in Applied Mechanics and Engineering,50, 163–180.

    Article  MATH  MathSciNet  Google Scholar 

  • Song, S. & M.M. Yovanovich (1987). “Explicit relative contact pressure expression: dependence upon surface roughness parameters and Vickers microhardness coefficients”,AIAA, Paper 87-0152.

  • de Souza Neto, K. Hashimoto, D. Perić & D.R.J. Owen (1995). “A Phenomenological Model for Frictional Contact of Coated Steel Sheets Accounting for Wear Effects: Theory, Experiments and Numerical Simulation”.International Journal for Numerical Methods in Engineering, to appear.

  • Wriggers, P. (1987), “On Consistent Tangent Matrices for Frictional Contact Problems”, inProceedings of the International Conference NUMETA'87, J. Middleton & G.N. Pande, eds., Nijhoff, Dordrecht.

    Google Scholar 

  • Wriggers, P. (1995), “Finite Element Algorithms for Contact Problems”,Archives of Computational Methods in Engineering,2, 4, 1–50.

    Article  MathSciNet  Google Scholar 

  • Wriggers, P. & M. Imhof (1993), “On the Treatment of Nonlinear Unilateral Contact Problems”,Ing. Archiv.,63, 116–129.

    MATH  Google Scholar 

  • Wriggers, P. & C. Miche (1992), “Recent Advances in the Simulation of Thermomechanical Contact Processes”, inProc. of The Third International Conference on Computational Plasticity: Fundamentals and Applications, COMPLAS III, D.R.J. Owen, E. Oñate & E. Hinton, eds. Pineridge Press, Swansea, pp. 325–347.

    Google Scholar 

  • Wriggers, P. & C. Miche (1994), “Contact Constraints within Coupled Thermomechanical Analysis. A Finite Element Model”,Computer Methods in Applied Mechanics and Engineering,113, 301–319.

    Article  MATH  MathSciNet  Google Scholar 

  • Wriggers, P. & O. Scherf (1995), “An adaptive finite element method for clastoplastic contact problems”, inProc. of The Fourth International Conference on Computational Plasticity: Fundamentals and Applications, COMPLAS IV, D.R.J. Owen, E. Oñate & E. Hinton, eds., Pineridge Press, Swansea.

    Google Scholar 

  • Wriggers, P., O. Scherf & C. Carstensen (1995), “Adaptive Techniques for the Contact of Elastic Bodies”, inRecent Developments in Finite Element Analysis, T.J.R. Hughes, E. Oñate & O.C. Zienkiewicz, eds. CIMNE, Barcelona.

    Google Scholar 

  • Wriggers, P. & J.C. Simo (1985), “A Note on Tangent Stiffness for Fully Nonlinear Contact Problems”,Communications in Applied Numerical Methods,1, 199–203.

    Article  MATH  Google Scholar 

  • Wriggers, P., J.C. Simo & R.L. Taylor (1985), “Penalty and Augmented Lagrangian Formulations for Contact Problems”,Proceedings of the International Conference NUMETA'85, J. Middleton & G.N. Pande, eds. A.A. Balkema, Rotterdam.

    Google Scholar 

  • Wriggers, P., T. Vu Van & E. Stein (1990), “Finite Element Formulation of Large Deformation Impact-Contact Problems with Friction”,Computers and Structures,37, 319–331.

    Article  MATH  Google Scholar 

  • Wriggers, P. & G. Zavarise (1993), “On the Application of Augmented Lagrangian Techniques for Nonlinear Constitutive Laws in Contact Interfaces”,Communications in Numerical Methods in Engineering,9, 815–824.

    Article  MATH  Google Scholar 

  • Wriggers, P. & G. Zavarise (1993), “Thermomechanical Contact. A Rigorous but Simple Numerical Approach”,Computers and Structures,46, 47–53.

    Article  Google Scholar 

  • Yovanovich, M.M. (1981), “Thermal Contact Correlations”,AIAA, Paper 81-1164.

  • Zavarise, G., P. Wriggers & B. A. Schrefler (1995), “On Augmented Lagrangian Algorithms for Thermomechanical Contact Problems With Friction”,International Journal for Numerical Methods in Engineering,38 (17), 2929–2949.

    Article  MATH  Google Scholar 

  • Zavarise, G., P. Wriggers, E. Stein & B. A. Schrefler (1992), “Real Contact Mechanisms and Finite Element Formulation—A Coupled Thermomechanical Approach”,International Journal for Numerical Methods in Engineering,35 (4), 767–785.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O.C. & R.L. Taylor (1991),The Finite Element Method, 4th ed., Volume 2: Solid and Fluid Mechanics, Dynamics and Non-linearity, McGraw-Hill, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agelet de Saracibar, C. Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications. Arch Computat Methods Eng 5, 243–301 (1998). https://doi.org/10.1007/BF02897875

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02897875

Keywords

Navigation